National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

LM8805

Microprocessor Supervisory Circuits with Power Fail Input, Low Line Output, Manual Reset and Watchdog Timer

General Description

The LM8805 microprocessor supervisory circuit provides the maximum flexibility for monitoring power supplies and battery controlled functions in systems without backup batteries. The LM8805 is available in a 9-bump micro SMD package.

Built-in features include the following:

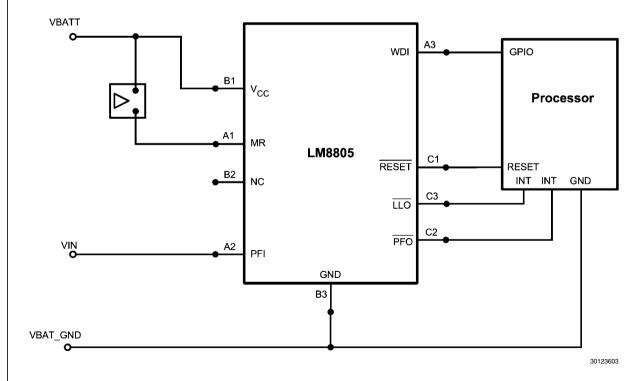
Reset: Reset is asserted during power-up, power-down, and brownout conditions. $\overline{\text{RESET}}$ is guaranteed down to V_{CC} of 1.0V.

Manual Reset Input: An input that asserts reset when taken high.

Power-Fail Input: A 1.225V threshold detector for power fail warning, or to monitor a power supply other than $V_{\rm CC}$.

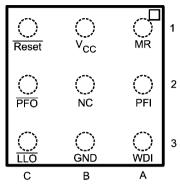
Low Line Output: This early power failure warning indicator goes low when the supply voltage drops to a value which is 2% higher than the reset threshold voltage.

Watchdog Timer: The WDI (Watchdog Input) monitors one of the μ P's output lines for activity. If no output transition occurs during the watchdog timeout period, reset is activated.


Features

- Standard Reset Threshold voltages:
 - Rising 2.6V
 - Falling 2.3V
- No external components required
- Manual-Reset input
- RESET output
- Precision supply voltage monitor
- Separate Power Fail comparator
- ±0.5% Reset threshold accuracy at room temperature
- ±2% Reset threshold accuracy over temperature extremes
- Reset assertion down to 1V V_{CC} (RESET option only)
- 28 µA V_{CC} supply current
- Available in large bump micro SMD package

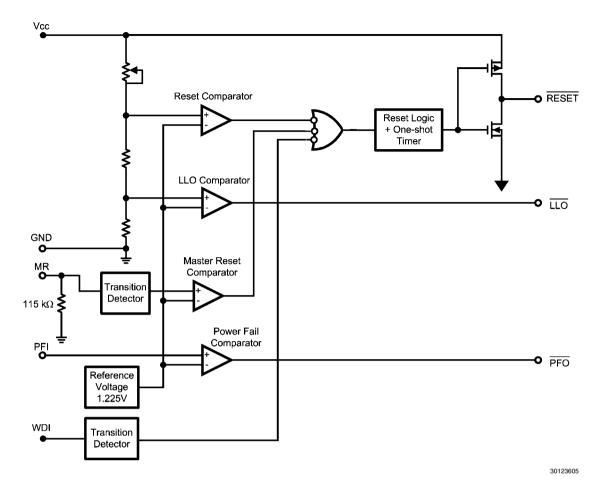
Applications


- Embedded Controllers and Processors
- Intelligent Instruments
- Automotive Systems
- Critical µP Power Monitoring

Typical Application

Connection Diagram

Top View (looking from the coating side) micro SMD 9 Bump Package TLA09



30123601

Pin Descriptions

Pin No.	N	Franchica			
micro SMD Name		Function			
A1	MR	Manual-Reset input. When MR is triggered RESET is latched low after time t _{MR} until there is an event on			
		V _{CC} .			
B1	V_{CC}	Power Supply input.			
C1	RESET	Reset Logic Output. Reset remains low whenever V _{CC} is below the reset threshold. It remains low for			
		t_{RP} after V_{CC} rises above the reset threshold.			
C2	PFO	Power-Fail Logic Output. When PFI is below V _{PFT} , PFO goes low; otherwise, PFO remains high.			
C3	LLO	Low-Line Logic Output. Early Power-Fail warning output. Low when V _{CC} falls below V _{LLOT} (Low-Line			
		Output Threshold). This output can be used to generate an NMI (Non-Maskable Interrupt) to provide an			
		early warning of imminent power-failure.			
B3	GND	Ground reference for all signals.			
А3	WDI	Watchdog Input Transition Monitor: If no transition activity occurs for a period exceeding t _{WD} (Watchdog			
		Timeout Period), $\overline{\text{RESET}}$ is latched until there is an event on V_{CC} .			
A2	PFI	Power-Fail Comparator Input. When PFI is less than V _{PFT} (Power-Fail Reset Threshold), the PFO goes			
		low; otherwise, PFO remains high.			
B2	NC	No Connect. Test input used at factory only. Leave floating.			

Block Diagram

Ordering Information LM8805

Order Number	Option	Production Identification	Supplied as
LM8805TLE/NOPB	2.6V	V3	250 Tape & Reel
LM8805TLX/NOPB	2.6V	V3	3000 Tape & Reel
LM8805TLE-3.0/NOPB	3.0V	V4	250 Tape & Reel
LM8805TLX-3.0/NOPB	3.0V	V4	3000 Tape & Reel

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.3V to 6.0V All Other Inputs -0.3V to $V_{CC} + 0.3V$ Junction Temperature (T_{J-MAX}) $+150^{\circ}C$ ESD Ratings (Note~2) Human Body Model 2.0kV Machine Model 150V Power Dissipation (Note~3)

Operating Ratings (Note 1)

Temperature Range $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 85^{\circ}\text{C}$

Thermal Properties (Note 1)

Junction-To-Ambient Thermal

Resistance

 $\theta_{\text{J-A}}$ JEDEC Board 110°C/W $\theta_{\text{J-A}}$ 4Layer Board 68°C/W

LM8805 Electrical Characteristics

Limits in the standard typeface are for $T_J = 25^{\circ}\text{C}$ and limits in **boldface type** apply over full operating range. Unless otherwise specified: $V_{CC} = +2.2\text{V}$ to 5.5V.

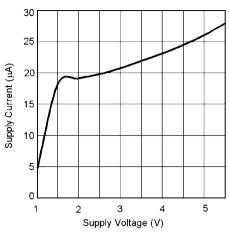
Symbol	Parameter	Conditions	Min	Тур	Max	Units
POWER SI	JPPLY				•	
V _{CC}	Operating Voltage Range: V _{CC}		1.0		5.5	V
I _{cc}	V _{CC} Supply Current	All inputs = V _{CC} ; all outputs floating		28	50	μA
RESET TH	RESHOLD	•			•	
V _{RST}	Reset Threshold	V _{CC} falling	-0.5 -2	V _{RST}	+0.5 +2	%
		V _{CC} falling: T _A = 0°C to 70°C	-1.5		+1.5	7
V _{RSTH}	Reset Threshold Hysteresis		200	300	400	mV
t _{RP}	Reset Timeout Period	Reset Timeout Period = E, J, N, S	1	1.4	2	ms
t _{RD}	V _{CC} to Reset Delay	V _{CC} falling at 1mV/μs		20		μs
RESET		•			•	
V _{OL}	RESET	$V_{CC} > 1.0V, I_{SINK} = 50\mu A$			0.3	
		$V_{CC} > 1.2V$, $I_{SINK} = 100\mu A$			0.3	7
		$V_{CC} > 2.25V, I_{SINK} = 900\mu A$			0.3	٦
		V _{CC} > 2.7V, I _{SINK} = 1.2mA			0.3	٦.,
		V _{CC} > 4.5V, I _{SINK} = 3.2mA			0.4	
V _{OH}	RESET	$V_{CC} > 2.25V, I_{SOURCE} = 300\mu A$	0.8 V _{CC}			7
		$V_{CC} > 2.7V$, $I_{SOURCE} = 500\mu A$	0.8 V _{CC}			7
		$V_{CC} > 4.5V$, $I_{SOURCE} = 800\mu A$	V _{CC} - 1.5V			7

Symbol	Parameter	Conditions	Min	Тур	Max	Units
WDI						
WDI	Watchdog Input Current	$V_{WDI} = V_{CC}$	-1		+1	μА
WDI _T	Watchdog Input Threshold		0.4		1.5	V
t_{WD}	Watchdog Timeout Period	Watchdog Timeout Period (Note 4)	90,000	128,000	160,000	ms
PFI	•		· ·	•	!	
V_{PFT}	PFI Input Threshold		1.200	1.225	1.250	V
V _{PFTH}	PFI/MR Threshold Hysteresis	PFI/MR falling: V _{CC} = V _{RST MAX} to 5.5V		0.0032•V _{RST}		mV
I _{PFI}	Input Current		-75		75	nA
MR	<u> </u>			ļ.		
V _{MRT}	MR Input Threshold		0.4		1.5	V
R _{MR}	MR Pull-down Resistance		90	115	140	kΩ
t _{MD}	MR to Reset Delay			12		μs
t _{MR}	MR Pulse Width		25			μs
PFO, LLO	Į.	-	· · · ·	ļ.		
V _{OL}	PFO, LLO Output	V _{CC} > 2.25V, I _{SINK} = 900μA			0.3	
OL.	Voltage	$V_{CC} > 2.7V$, $I_{SINK} = 1.2mA$			0.3	V
		$V_{CC} > 4.5V, I_{SINK} = 3.2mA$			0.4	
V _{OH}		V _{CC} > 2.25V, I _{SOURCE} = 300μA	0.8 V _{CC}			
OH		V _{CC} > 2.7V, I _{SOURCE} = 500μA	0.8 V _{CC}			
		$V_{CC} > 4.5V$, $I_{SOURCE} = 800\mu A$	V _{CC} – 1.5V			
LLO OUTP	UT	TCC NOT, SOURCE STOP	1 - CC	ļ.	ļ	
V _{LLOT}	LLO Output Threshold (V _{LLO} - V _{RST} , V _{CC} falling)		1.01•V _{RST}	1.02•V _{RST}	1.03•V _{RST}	V
V _{LLOTH}	Low-Line Comparator Hysteresis			0.0032•V _{RST}		mV
t _{CD}	Low-Line Comparator Delay	V _{CC} falling at 1mV/μs		20		μs

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed conditions.

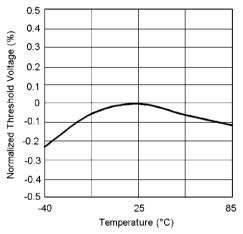
Note 2: The Human Body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

Note 3: The maximum allowable power dissipation is a function of the maximum junction temperature, $T_J(MAX)$, the junction-to-ambient thermal resistance, θ_{J-A} , and the ambient temperature, T_{A-A} . The maximum allowable power dissipation at any ambient temperature is calculated using:

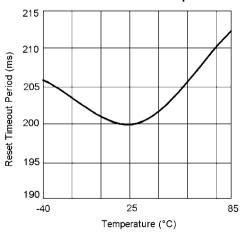

$$P(MAX) = \frac{T_{J}(MAX) - T_{A}}{\theta_{J-A}}$$

Where the value of $\theta_{\text{J-A}}$ for the 9-bump micro SMD package is 110°C/W in a typical PC board.

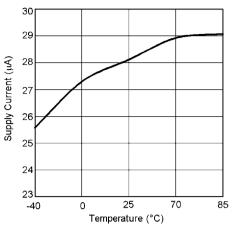
Note 4: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm.


Typical Performance Characteristics

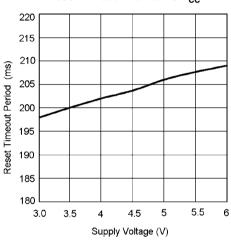
Supply Current vs Supply Voltage


30123615

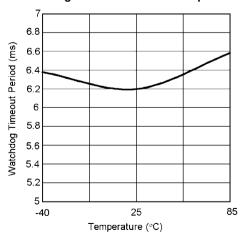
Normalized Reset Threshold Voltage vs Temperature


30123612

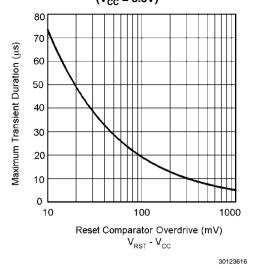
Reset Timeout Period vs Temperature


30123610

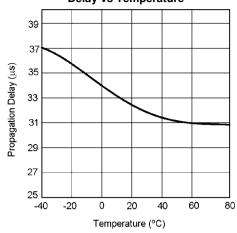
3.3V Supply Current vs Temperature


30123611

Reset Timeout Period vs V_{CC}


30123632

Watchdog Timeout Period vs Temperature



30123613

Max. Transient Duration vs Reset Comparator Overdrive $(V_{CC} = 3.3V)$

Low-Line Comparator Propagation Delay vs Temperature

30123614

Circuit Information

RESET OUTPUT

The Reset input of a μP initializes the device into a known state. The LM8805 microprocessor supervisory circuit asserts a forced reset output to prevent code execution errors during power-up, power-down, and brownout conditions.

RESET is guaranteed valid for $V_{\rm CC}$ > 1V. Once $V_{\rm CC}$ exceeds the reset threshold, an internal timer maintains the output for the reset timeout period. After this interval, reset goes high. The LM8805 offers an active-low $\overline{\rm RESET}$.

Any time V_{CC} drops below the reset threshold (such as during a brownout), the reset activates. When V_{CC} again rises above the reset threshold, the internal timer starts. Reset holds until V_{CC} exceeds the reset threshold for longer than the reset timeout period. After this time, reset releases.

The Manual Reset input (MR) will initiate a forced reset also. See the *Manual Reset Input* section.

RESET THRESHOLD

The LM8805 is available with a reset threshold of 2.3V with a hysteresis of 300mV equating to a rising turn-on threshold of 2.60V.

MANUAL RESET INPUT (MR)

Many μP -based products require a manual reset capability, allowing the operator to initiate a reset. The MR input is fully debounced and provides an internal 115 k Ω pull-down. When the MR input pulses high, reset is asserted after a typical delay of 12 μs . Reset remains active until power is recycled and a V_{CC} rising edge is detected.

POWER-FAIL COMPARATOR (PFI/PFO)

The PFI is compared to a 1.225V internal reference, V_{PFT} . If PFI is less than V_{PFT} , the Power Fail Output \overline{PFO} drops low. The power-fail comparator signals a falling power supply, and is driven typically by an external voltage divider that senses either the unregulated supply or another system supply voltage.

LOW-LINE OUTPUT (LLO)

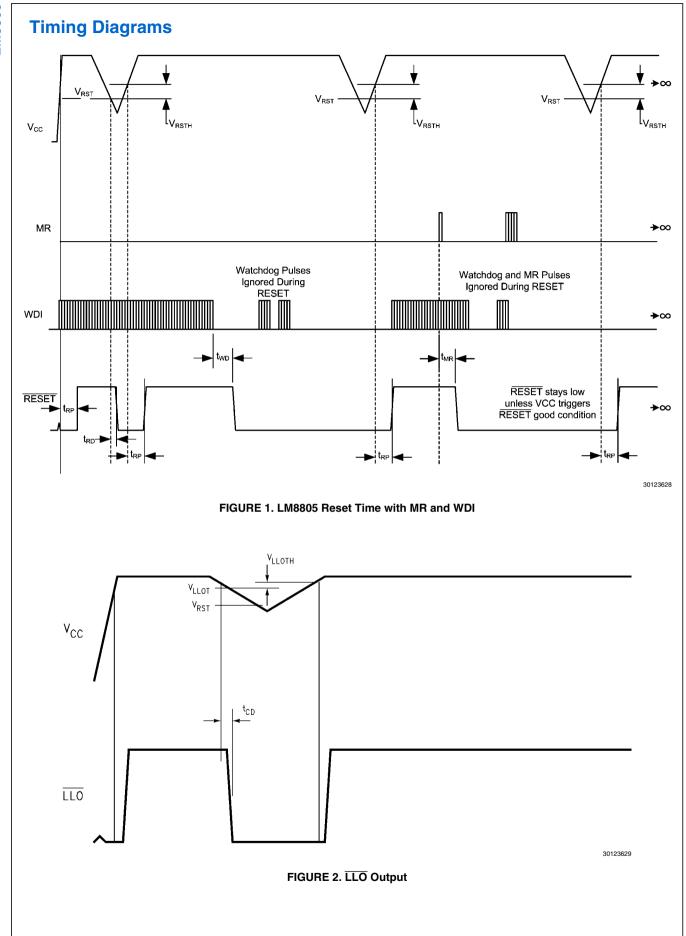
The low-line output comparator is typically used to provide a non-maskable interrupt to a μP when V_{CC} begins falling. $\overline{\text{LLO}}$ monitors V_{CC} and goes low when V_{CC} falls below V_{LLOT} (typically 1.02 • V_{RST}) with hysteresis of 0.0032 • V_{RST} .

WATCHDOG TIMER INPUT (WDI)

The watchdog timer input monitors one of the microprocessor's output lines for activity. Each time a transition occurs on this monitored line, the watchdog counter is reset. However, if no transition occurs and the timeout period is reached, the LM8805 assumes that the microprocessor has locked up and the reset output is activated.

When tripped by the watchdog timer, the RESET pin will stay asserted and ignore any further activity from the WDI input. RESET can only be deasserted by a V_{CC} voltage event. Refer to *Figure 1* for more details

WDI is a high impedance input.


SPECIAL PRECAUTIONS FOR THE MICRO SMD PACKAGE

As with most integrated circuits, the LM8805 is sensitive to exposure from visible and infrared (IR) light radiation. Unlike a plastic encapsulated IC, the micro SMD package has very limited shielding from light, and some sensitivity to light reflected from the surface of the PC board or long wavelength IR entering the die from the side may be experienced. This light could have an unpredictable affect on the electrical performance of the IC. Care should be taken to shield the device from direct exposure to bright visible or IR light during operation.

MICRO SMD MOUNTING

The micro SMD package requires specific mounting techniques which are detailed in National Semiconductor Application Note AN-1112. Referring to the section *Surface Mount Technology (SMT) Assembly Considerations*, it should be noted that the pad style which must be used with the 9-pin package is the NSMD (non-solder mask defined) type.

For best results during assembly, alignment ordinals on the PC board may be used to facilitate placement of the micro SMD device.

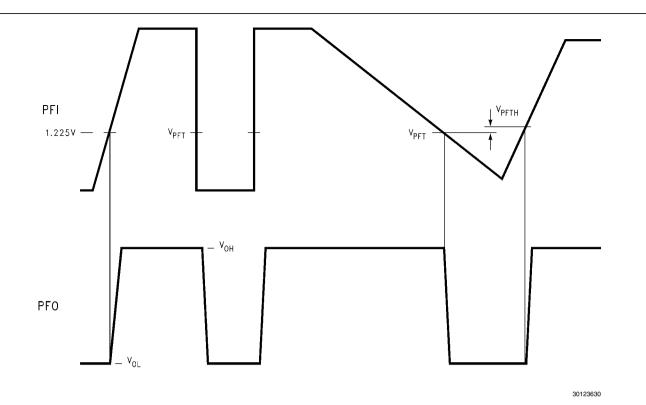
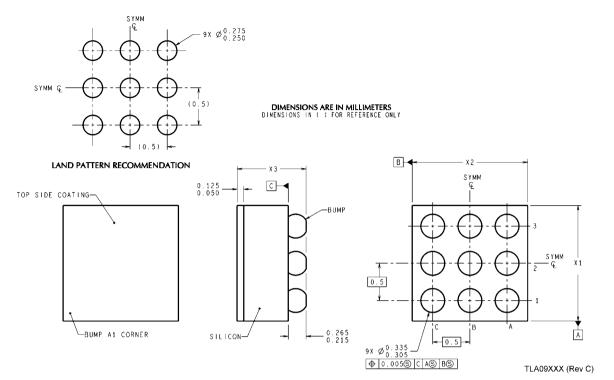



FIGURE 3. PFI Comparator Timing Diagram

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES: UNLESS OTHERWISE SPECIFIED

- 1. EPOXY COATING
- 2. 63Sn/37Pb EUTECTIC BUMP
- 3. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.
- 4. PIN 1 IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION. REMAINING PINS ARE NUMBERED COUNTER CLOCKWISE.
- 5. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X1 IS PACKAGE WIDTH, X2 IS PACKAGE LENGTH AND X3 IS PACKAGE HEIGHT.

9 bump micro SMD Package NS Package Number TLA09ZZA The dimensions of X1, X2 and X3 are given below

X1 = 1.465mm X2 = 1.465mm X3 = 0.600mm

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pro	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com