

Wireless power

Alex Li
Industrial Power & Energy Competence Center
AP Region, STMicroelectronics

Our mission: safe and reliable products

Qi certification, Robust design, No overheat

WPC 2019 market survey:

More than 80% of the TX cannot pass EPP Qi conformance tests More than 60% of the TX cannot pass BPP Qi conformance tests

TX most frequent cause of fail:

loose power control may cause RX overvoltage

poor heating prevention

Our STWBC and STWBC2 products outmatch Qi spec:

Better heating prevention

Finer patented power control – no RX overvoltage

Wireless power TX family and roadmap

1 - 2.5 W

Wearable Devices

Optimized for ultra-compact battery-operated

5 -15 W Single coil **Smartphones**

Qi 1.2.4 BPP/EPP certified

5 -15 W Multi-coil **Smartphones**

Qi 1.2.4 EPP certified

15 - 50 W

super fast charge

Smartphones

Qi 1.2.4 certified


IC: STWBC-WA **EVB: STEVAL-ISB045V1**

IC: STWBC-EP **EVALSTWBC-EP** STEVAL-ISB044V1

STWBC-MC STEVAL-ISB047V1 **STEVAL-QINFCAU1***

STWBC2* STEVAL-STSC*

A complete development ecosystem is available including certified reference design boards, API libraries, documentation and graphical user interfaces to access to real-time data and configurable parameters. Optimized Time-To-Market *available Q1 2021

STWBC2x family

Digital controller for wireless power TX integrated 32-bit MCU with Flash Memory

Qi and Ki

Limitless Wireless Power Architecture

Multi Market Flexibility
OEMs and MM

Future Proof -Ready for Standard and Proprietary Protocol Evolution

Key Added Value Features: Fast Loop patent, High Voltage and Flash Memory, USB PD, robust triple demodulation

STWBC2

Qi Wireless power TX with embedded 32bit MCU, DCDC controller and gate drivers for consumer and industrial applications

ES available MP Jan 2021

Key features

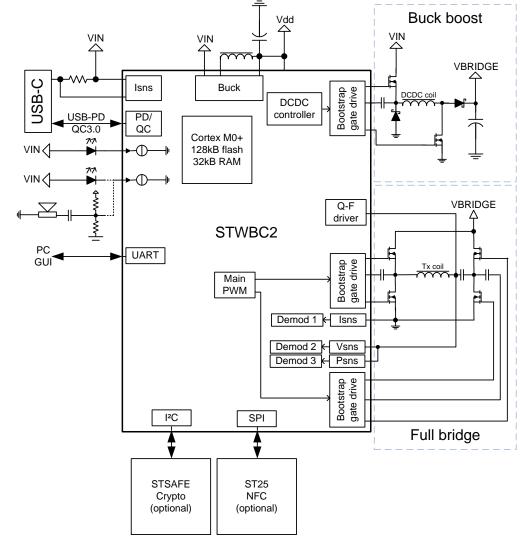
- WPC Qi 1.2.4 and fast charge proprietary extensions
- ARM 32-bit Cortex[™]-M0+ CPU up to 64MHz
- Buck/Boost digital DCDC + full bridge inverter
- 3x Half bridge drivers
- 1ns resolution PWM generator (40MHz PLL, 17-step DLL)
- USB-QC and USB-PD interfaces

Key benefits

- Limitless fast charge operations (50W and more)
- Leading edge integration short BOM
- Best in class efficiency
- UART FW update with 128kB flash, 32kB SRAM

KEY APPLICATIONS

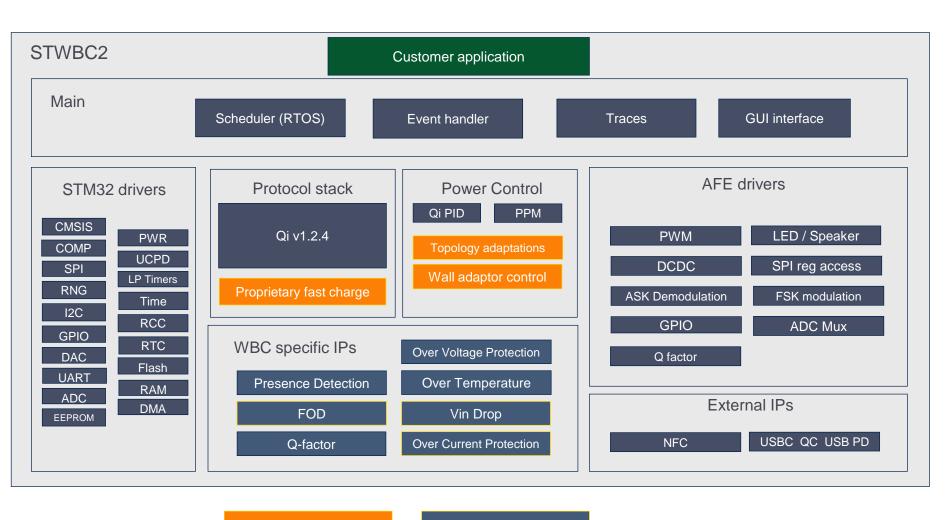
- Ultra fast charging pads for Smartphones, Laptops and tablets
- Wireless chargers for Drones, Lawn mowers, Robots, Tools, eBikes



STWBC2 product description

Package: QFN 8x8 68L 0.4mm pitch

Main Features and key IPs


- 15W WPC Qi EPP 1.2.4 and Qi 1.3*
- 50W ST Super charge proprietary extension
- ARM 32-bit Cortex[™]-M0+ CPU up to 64MHz
- 3x Half bridge drivers for Full Bridge topologies + DC/DC
- Flexible topology: half / full bridge, fixed / variable frequency
- Buck, Boost, Buck/Boost digital controller
- 1ns resolution PWM generator (40MHz PLL, 17-step DLL)
- Qi FSK programmable modulator
- Integrated I, V, Φ sensors and demodulators.
- Qfactor driver for improved Foreign Object Detection
- VIN operating range: 4.1V to 24V
- USB Power Delivery, QC 3.0
- UART, SPI, I2C interfaces for NFC and Authentication
- 12-bit ADC
- 128 Kbytes of Flash memory
- 32 Kbytes of SRAM with HW parity check

FW architecture of baseline

Target one flexible topology

- MP-A2 based but customizable to other single coil topology
- Qi EPP 1.2.4
- STSC (ST proprietary protocol for high power)
- 2 Power Extended modes implemented (F or V control)
- Multi Power mode withGeneric PID implemented
- Generic FOD management
- Generic OVP management
- USB-PD, USB-QC, jack inputs

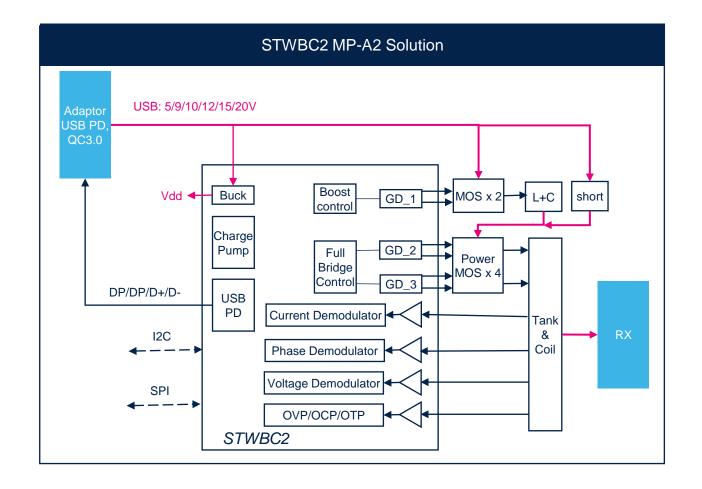
Tunable

High Power TX architecture proposal full bridge, variable frequency

Universal charger

- 50W or more capable with 20V 3A input
- 27W capable with 10V 4A input
- 15W EPP / 5W BPP Qi 1.2.4 compliant
- 10W Samsung proprietary fast charge

High level of integration / Short BOM


- Full bridge architecture
- Digital boost DCDC with short for 50W mode
- Q-factor driver, Sense and Demodulation
- USB-PD and custom USB interfaces

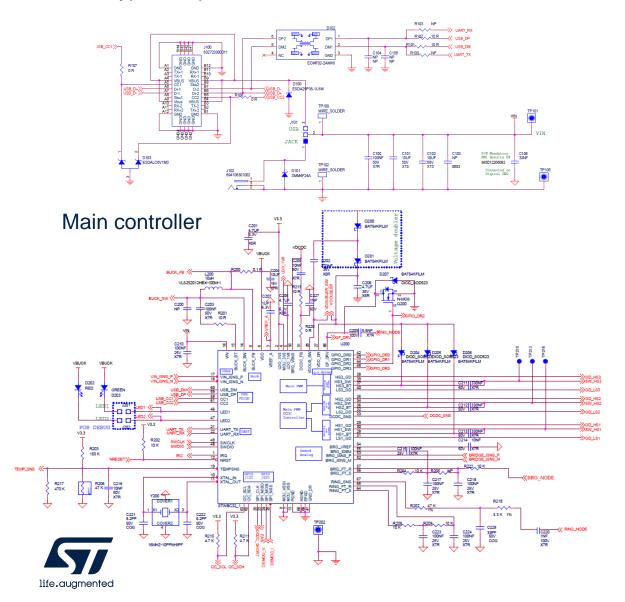
Enhanced safety

- Q-Factor based FOD, possible proprietary calibration
- OV, OC, OT protections

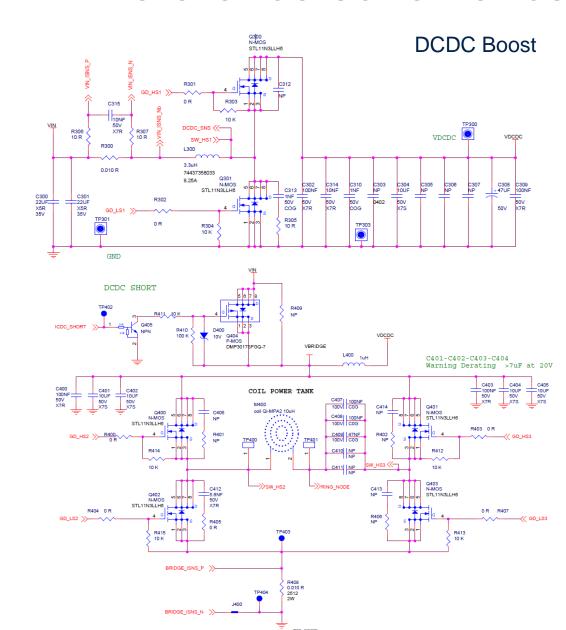
Stable charge, large charging area

Triple path demodulation (V, I, Phase)

Qi Topologies efficiency comparison


Type of Tx	Power components	Losses on Tx	Losses on Tx at 40W
Variable frequency (MP-A2, MP-A22)	Bridge: 4xMOS	~10% (bridge + tank)	~5W
Fixed frequency Variable voltage (MP-A9, MP-A11,)	Bridge: 4xNMOS DCDC: 2xNMOS + 2xSchottky + 4.7µH	~10% (bridge + tank) 5~10% (DCDC)	8W~12W
Variable voltage Filtered tank (MPA13,)	Bridge: 4xNMOS DCDC: 2xNMOS + 2xSchottky + 4.7μH Filter: 2x1μH + 4x100nF COG	~20% (bridge + tank + filter) 5~10% (DCDC)	15W~20W

- Topologies with good EMI and RF coexistence have drawbacks:
 - On cost: buck-boost DCDC required, filter required
 - On efficiency: up to 20% degradation with DCDC + filtered tank
- At high power transfer, **only variable frequency topologies appear realistic** considering the Tx power to dissipate



USB Type-C input

MP-A2 reference schematics

STWBC2 competition analysis

	STWBC2	R* P9247	
Max power	50W	30W	
Qi protocol	1.2.4 EPP (1.3 ready)	1.2.4 EPP	
Input voltage range	4.5V – 24V	5V – 19V	
Full bridge inverter max voltage	40V (65V AMR)	19V	
Flash memory	128kB	No (OTP)	
USB-PD interface (sink)	Yes	no	
Communication interfaces	SPI, I2C, UART	I2C	
Integrated DCDC controller	Yes	no	
Integrated gate drivers	3 x Half Bridge	2 x Half Bridge	
Vin current sensor	Yes	Yes	
Phase demodulator	Yes	no	
RX overvoltage protection	Yes	no	
Improved FOD management	Yes	no	

STWBC2 deliverables

Software

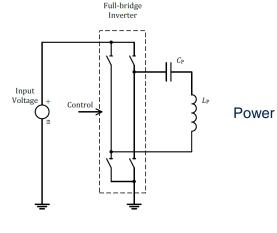
- FW libraries / source (IAR 8.3x)
- GUI Windows application

Documentation

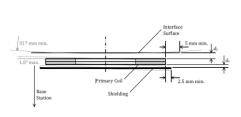
- EVB User Manual
- Datasheet
- Schematic, PCB layout + Design guidelines
- Generic PID and converters guideline (for topology change)
- Guideline for proprietary protocol porting

Hardware

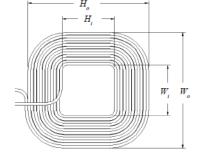
Evaluation boards: MP-A2 topology, MP-A22 topology (Available June 2021)



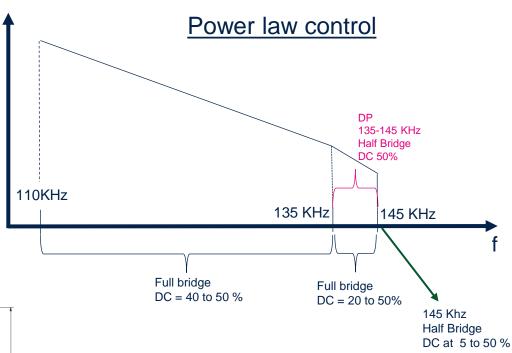
Backup



MP-A2



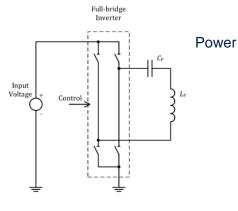
 $Lp = 10 \pm 10\% \mu H$ $Cp = 247 \pm 5\% nF$ fop = 110 kHz to 145 kHzduty cycle of ton/tperiod = 5% to 50%.


VBridge = 12V

dz = 3mm

Parameter	Symbol	Value
Outer height	H _o	48 ^{±0.5} mm
Inner height	Hi	19 ^{±0.5} mm
Outer width	W _o	48 ^{±0.5} mm
Inner width	Wi	19 ^{±0.5} mm
Thickness	d_{c}	1.1 ^{±0.3} mm
Number of turns per layer	N	12
Number of layers	-	1

Digital ping (DP):

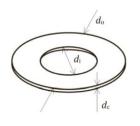

135 kHz to 140 kHz Half Bridge duty cycle of 50%

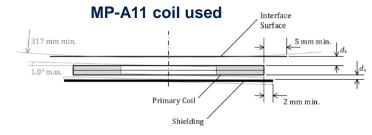
Center

MP-A22

Power law control

DP
146 KHz + 1.5
KHz
DC 50%
5V input


146 KHz + 1.5 KHz


148.5KHz

110 KHz

 $Lp = 6.3 \mu H \pm 10\%$ $Cp = 440 \pm 5\% nF$ fop = 110 kHz to 148.5 kHzDuty = 50%

VBridge = 5V for Ping and up to 5W , 9V from 5 to 10W and 12V from 10 to 15W for EPP 5V for BPP

dz = 3 mm + -0.5 mm

Number of layers: 1 or 2

Wire type: No.40 AWG x 105 strands Shielding thickness: Ths = 1.5 mm min.

Shielding material: Ni-Zn ferrite

Parameter	Symbol	Value
Outer length	d_o	44.0 ^{±1.5} mm
Inner length	d_i	20.5 ^{±0.5} mm
Thickness	d_c	2.1 ^{+0.5} mm
Number of turns per layer	N	10 (5 bifilar turns)
Number of layers	-	1 or 2

PID parameters for Operating Frequency control			
Parameter	Symbol	Value	Unit
Proportional gain	K _p	10	mA ⁻¹
Integral gain	K,	0.05	mA ⁻¹ * ms ⁻¹
Derivative gain	K _d	0	mA ⁻¹ * ms
Integral term limit	M_I	3,000	N.A.
PID output limit	M_PID	20,000	N.A

PID parameters for Duty Cycle control			
Parameter	Symbol	Value	Unit
Proportional gain	K _p	10	mA ⁻¹
Integral gain	K,	0.05	mA ⁻¹ * ms ⁻¹
Derivative gain	K _d	0	mA ⁻¹ * ms
Integral term limit	M_I	3,000	N.A.
PID output limit	M_PID	20,000	N.A
Scaling factor	Sv	-0.01	%

Thank you

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

