

RL78/G23

<R>

RENESAS MCU

R01DS0395EJ0110 Rev.1.10 Nov 18, 2021

True low-power platform, 41-µA/MHz operating current, 210-nA holding current for 4 KB of RAM, up to 768-KB code flash memory and 48-KB RAM, Capacitive sensing unit, from 30 to 128 pins, 1.6-5.5 V

1. Outline

1.1 Features

Ultra-low power consumption technology

- VDD = single power supply voltage of 1.6 to 5.5 V
- HALT mode
- STOP mode
 High-speed wakeup from the STOP mode is possible.
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.03125 µs @ 32 MHz operation with the high-speed on-chip oscillator clock) to ultra-low speed (30.5 µs @ 32.768 kHz operation with the subsystem clock)
- Multiply/divide/multiply & accumulate instructions are supported.
- Address space: 1 MB
- General-purpose registers: (8-bit register x 8) x 4 banks
- On-chip RAM: 12 to 48 KB

Code flash memory

- Code flash memory: 96 to 768 KB
- Block size: 2 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debugging
- Self-programming (with boot swapping and flash shield window)

Data flash memory

- Data flash memory: 8 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (typ.)

High-speed on-chip oscillator

- Select from 32 MHz, 24 MHz, 16 MHz, 12 MHz,
 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, or 1 MHz
- High accuracy: $\pm 1.0\%$ (VDD = 1.8 to 5.5 V, TA = -20 to $+85^{\circ}$ C)

<R> Middle-speed on-chip oscillator

 Select from 4 MHz, 2 MHz, or 1 MHz (with adjustability)

Low-speed on-chip oscillator

• 32.768 kHz (typ.) (with adjustability)

Operating ambient temperature

- TA = -40 to +85°C (2D: Consumer applications)
- TA = -40 to +105°C (3C: Industrial applications)

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detectors (LVD0 and LVD1)

Data transfer controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- Activation sources: Activated by interrupt sources.
- Chain transfer function

SNOOZE mode sequencer (SMS)

- Calculations and comparison of values by the commands for use in processing by the sequencer can realize intermittent operations where the RL78/G23 does not have to return to normal operation.
- Sequentially handling a total of 32 processes with the use of desired commands from among 21 different ones
- The SNOOZE mode sequencer offers operation with low power consumption without using the CPU, flash memory, and RAM.

Logic and event link controller (ELCL)

- Event signals can be set up between specified peripheral functions.
- The signals can be generated by the input of multiple event signals to the logic circuit.
- Flip-flop circuits are incorporated to handle setting and resetting functions.

Serial interface

- Simplified SPI (CSINote 1): 3 to 8 channels
- UART/UART (LIN-bus supported)/UARTA:
 3 to 6 channels
- I2C/Simplified I2C: 4 to 10 channels

Remote control signal receiver

- 1 channel
- Matching of 4 waveform patterns (header, data 0, data 1, and special data)

Timers

- 16-bit timer: 8 to 16 channels
- 32-bit interval timer: 1 channel in 32-bit counter mode
 2 channels in 16-bit counter

2 channels in 16-bit counte mode

4 channels in 8-bit counter mode

- Realtime clock: 1 channel (counting of one second to 99 years, alarm interrupt, and clock correction)
- Watchdog timer: 1 channel (operates with the dedicated low-speed on-chip oscillator clock)

A/D converter

- 8-/10-/12-bit resolution A/D converter (VDD = 1.6 to 5.5 V)
- Analog input: 8 to 26 channels
- Internal reference voltage (1.48 V) and temperature sensor

D/A converter

- 8-bit resolution D/A converter (VDD = 1.6 to 5.5 V)
- Analog output: 2 channelsOutput voltage: 0 V to VDD
- Realtime output function

Comparator

- 2 channels
- Operating modes: Comparator high-speed mode and comparator low-speed mode

1. Outline

 The external reference voltage and the internal reference voltage or D/A converter output are selectable as the reference voltage.

Capacitive sensing unit

- CTSU2L operating voltage condition:
 VDD = 1.8 to 5.5 V
- Self-capacitance method: A single pin configures a single key, supporting up to 32 keys
- Mutual capacitance method: Matrix configuration with 8 x 8 pins, supporting up to 64 keys

Input/output port pins

• Number of port pins:

26 to 120 (N-ch open drain I/O [withstand voltage of 6 V]: 2 to 4, N-ch open drain I/O [VDD withstand voltageNote 2/EVDD withstand voltageNote 3]: 10 to 33, output current control pins: 6 to 8)

- Can be set to N-ch open drain or TTL input buffer, and use of an on-chip pull-up resistor can be specified.
- Connectable to a device with different voltage (1.8, 2.5, or 3 V)

Others

- BCD (binary-coded decimal) correction circuit
- Key interrupt input
- Clock output/buzzer output controller
- Note 1. Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.
- **Note 2.** This applies to the 30- to 52-pin products.
- **Note 3.** This applies to the 64- to 128-pin products.
- Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

O ROM, RAM capacities

Flash	Data	RAM	RL78/G23						
ROM	flash	KAW	30 pins	32 pins	36 pins	40 pins	44 pins	48 pins	
768 KB	8 KB	48 KB	_	_	_	_	R7F100GFN	R7F100GGN	
512 KB	8 KB	48 KB	_	_	_	_	R7F100GFL	R7F100GGL	
384 KB	8 KB	32 KB	_	_	_	_	R7F100GFK	R7F100GGK	
256 KB	8 KB	24 KB	R7F100GAJ	R7F100GBJ	R7F100GCJ	R7F100GEJ	R7F100GFJ	R7F100GGJ	
192 KB	8 KB	20 KB	R7F100GAH	R7F100GBH	R7F100GCH	R7F100GEH	R7F100GFH	R7F100GGH	
128 KB	8 KB	16 KB	R7F100GAG	R7F100GBG	R7F100GCG	R7F100GEG	R7F100GFG	R7F100GGG	
96 KB	8 KB	12 KB	R7F100GAF	R7F100GBF	R7F100GCF	R7F100GEF	R7F100GFF	R7F100GGF	

Flash	Data	DAM	RL78/G23					
ROM	flash	KAW	52 pins	64 pins	80 pins	100 pins	128 pins	
768 KB	8 KB	48 KB	R7F100GJN	R7F100GLN	R7F100GMN	R7F100GPN	R7F100GSN	
512 KB	8 KB	48 KB	R7F100GJL	R7F100GLL	R7F100GML	R7F100GPL	R7F100GSL	
384 KB	8 KB	32 KB	R7F100GJK	R7F100GLK	R7F100GMK	R7F100GPK	R7F100GSK	
256 KB	8 KB	24 KB	R7F100GJJ	R7F100GLJ	R7F100GMJ	R7F100GPJ	R7F100GSJ	
192 KB	8 KB	20 KB	R7F100GJH	R7F100GLH	R7F100GMH	R7F100GPH	_	
128 KB	8 KB	16 KB	R7F100GJG	R7F100GLG	R7F100GMG	R7F100GPG	_	
96 KB	8 KB	12 KB	R7F100GJF	R7F100GLF	_	_	_	

1.2 List of Part Numbers

<R>

Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G23

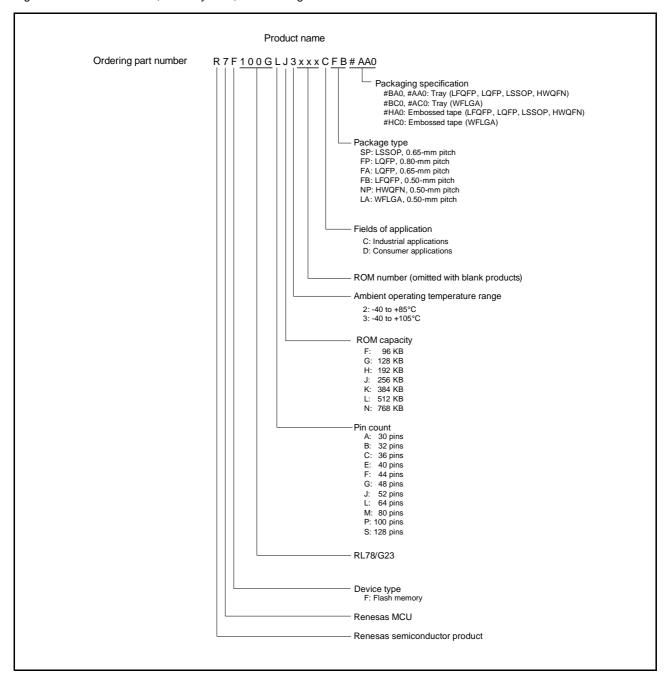


Table 1 - 1 List of Ordering Part Numbers (1/3)

		Fields of	Ordering Part Number		
Pin count	Package	Application Note 1	Product Name	Packaging Specification	Renesas Code
30 pins	30-pin plastic LSSOP (7.62 mm (300), 0.65-mm pitch)	С	R7F100GAF3CSP, R7F100GAG3CSP, R7F100GAH3CSP, R7F100GAJ3CSP	#AA0, #BA0 #HA0	PLSP0030JB-B
		D	R7F100GAF2DSP, R7F100GAG2DSP, R7F100GAH2DSP, R7F100GAJ2DSP		
32 pins	32-pin plastic HWQFN (5 × 5 mm, 0.5-mm pitch)	С	R7F100GBF3CNP, R7F100GBG3CNP, R7F100GBH3CNP, R7F100GBJ3CNP	#AA0, #BA0 #HA0	PWQN0032KE-A
		D	R7F100GBF2DNP, R7F100GBG2DNP, R7F100GBH2DNP, R7F100GBJ2DNP		
32 pins	32-pin plastic LQFP (7 × 7 mm, 0.80-mm pitch)	С	R7F100GBF3CFP, R7F100GBG3CFP, R7F100GBH3CFP, R7F100GBJ3CFP	#AA0, #BA0 #HA0	PLQP0032GB-A
		D	R7F100GBF2DFP, R7F100GBG2DFP, R7F100GBH2DFP, R7F100GBJ2DFP	_	
36 pins	36-pin plastic WFLGA (4 × 4 mm, 0.50-mm pitch)	С	R7F100GCF3CLA, R7F100GCG3CLA, R7F100GCH3CLA, R7F100GCJ3CLA	#BC0, #AC0 #HC0	Note 2
		D	R7F100GCF2DLA, R7F100GCG2DLA, R7F100GCH2DLA, R7F100GCJ2DLA		
40 pins	40-pin plastic HWQFN (6 × 6 mm, 0.50-mm pitch)	С	R7F100GEF3CNP, R7F100GEG3CNP, R7F100GEH3CNP, R7F100GEJ3CNP	#AA0, #BA0 #HA0	PWQN0040KD-A
		D	R7F100GEF2DNP, R7F100GEG2DNP, R7F100GEH2DNP, R7F100GEJ2DNP	-	
44 pins	44-pin plastic LQFP (10 × 10 mm, 0.80-mm pitch)	С	R7F100GFF3CFP, R7F100GFG3CFP, R7F100GFH3CFP, R7F100GFJ3CFP, R7F100GFK3CFP, R7F100GFL3CFP, R7F100GFN3CFP	#AA0, #BA0 #HA0	PLQP0044GC-A
		D	R7F100GFF2DFP, R7F100GFG2DFP, R7F100GFH2DFP, R7F100GFJ2DFP, R7F100GFK2DFP, R7F100GFL2DFP, R7F100GFN2DFP		
48 pins	48-pin plastic LFQFP (7 x 7 mm, 0.50-mm pitch)	С	R7F100GGF3CFB, R7F100GGG3CFB, R7F100GGH3CFB, R7F100GGJ3CFB, R7F100GGK3CFB, R7F100GGL3CFB, R7F100GGN3CFB	#AA0, #BA0 #HA0	PLQP00048KB-B
		D	R7F100GGF2DFB, R7F100GGG2DFB, R7F100GGH2DFB, R7F100GGJ2DFB, R7F100GGK2DFB, R7F100GGL2DFB, R7F100GGN2DFB		
48 pins	48-pin plastic HWQFN (7 × 7 mm, 0.50-mm pitch)	С	R7F100GGF3CNP, R7F100GGG3CNP, R7F100GGH3CNP, R7F100GGJ3CNP, R7F100GGK3CNP, R7F100GGL3CNP, R7F100GGN3CNP	#AA0, #BA0 #HA0	PWQN0048KC-A
		D	R7F100GGF2DNP, R7F100GGG2DNP, R7F100GGH2DNP, R7F100GGJ2DNP, R7F100GGK2DNP, R7F100GGL2DNP, R7F100GGN2DNP		

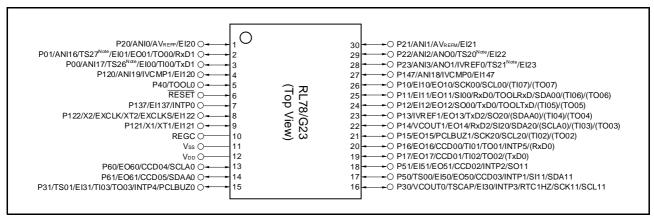
Table 1 - 1 List of Ordering Part Numbers (2/3)

		Fields of	Ordering Part Number		
Pin count	Package	Application Note 1	Product Name	Packaging Specification	Renesas Code
52 pins	52-pin plastic LQFP (10 × 10 mm, 0.65-mm pitch)	С	R7F100GJF3CFA, R7F100GJG3CFA, R7F100GJH3CFA, R7F100GJJ3CFA, R7F100GJK3CFA, R7F100GJL3CFA, R7F100GJN3CFA	#AA0, #BA0 #HA0	PLQP0052JA-A
		D	R7F100GJF2DFA, R7F100GJG2DFA, R7F100GJH2DFA, R7F100GJJ2DFA, R7F100GJK2DFA, R7F100GJL2DFA, R7F100GJN2DFA		
64 pins	64-pin plastic LQFP (12 × 12 mm, 0.65-mm pitch)	С	R7F100GLF3CFA, R7F100GLG3CFA, R7F100GLH3CFA, R7F100GLJ3CFA, R7F100GLK3CFA, R7F100GLL3CFA, R7F100GLN3CFA	#AA0, #BA0 #HA0	PLQP0064JA-A
		D	R7F100GLF2DFA, R7F100GLG2DFA, R7F100GLH2DFA, R7F100GLJ2DFA, R7F100GLK2DFA, R7F100GLL2DFA, R7F100GLN2DFA		
64 pins	64-pin plastic LFQFP C (10 x 10 mm, 0.50-mm pitch)		R7F100GLF3CFB, R7F100GLG3CFB, R7F100GLH3CFB, R7F100GLJ3CFB, R7F100GLK3CFB, R7F100GLL3CFB, R7F100GLN3CFB	#AA0, #BA0 #HA0	PLQP0064KB-C
		D	R7F100GLF2DFB, R7F100GLG2DFB, R7F100GLH2DFB, R7F100GLJ2DFB, R7F100GLK2DFB, R7F100GLL2DFB, R7F100GLN2DFB		
64 pins	64-pin plastic WFLGA C (5 x 5 mm, 0.50-mm pitch)		R7F100GLF3CLA, R7F100GLG3CLA, R7F100GLH3CLA, R7F100GLJ3CLA, R7F100GLK3CLA, R7F100GLL3CLA, R7F100GLN3CLA	#BC0, #AC0 #HC0	Note 3
		D	R7F100GLF2DLA, R7F100GLG2DLA, R7F100GLH2DLA, R7F100GLJ2DLA, R7F100GLK2DLA, R7F100GLL2DLA, R7F100GLN2DLA		
80 pins	80-pin plastic LQFP (14 × 14 mm, 0.65-mm pitch)	С	R7F100GMG3CFA, R7F100GMH3CFA, R7F100GMJ3CFA, R7F100GMN3CFA	#AA0, #BA0 #HA0	PLQP0080JA-B
		D	R7F100GMG2DFA, R7F100GMH2DFA, R7F100GMJ2DFA, R7F100GMK2DFA, R7F100GML2DFA, R7F100GMN2DFA		
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.50-mm pitch)	С	R7F100GMG3CFB, R7F100GMH3CFB, R7F100GML3CFB, R7F100GMN3CFB	#AA0, #BA0 #HA0	PLQP0080KB-B
		D	R7F100GMG2DFB, R7F100GMH2DFB, R7F100GMJ2DFB, R7F100GMK2DFB, R7F100GML2DFB, R7F100GMN2DFB		
100 pins	100-pin plastic LFQFP (14 × 14 mm, 0.50-mm pitch)	С	R7F100GPG3CFB, R7F100GPH3CFB, R7F100GPJ3CFB, R7F100GPK3CFB, R7F100GPL3CFB, R7F100GPN3CFB	#AA0, #BA0 #HA0	PLQP0100KB-B
		D	R7F100GPG2DFB, R7F100GPH2DFB, R7F100GPJ2DFB, R7F100GPK2DFB, R7F100GPL2DFB, R7F100GPN2DFB		

Table 1 - 1 List of Ordering Part Numbers (3/3)

		Fields of	Ordering Part Number		
Pin count	Package	Application Note 1	Product Name	Packaging Specification	Renesas Code
100 pins	100-pin plastic LQFP (14 × 20 mm, 0.65-mm pitch)	С	R7F100GPG3CFA, R7F100GPH3CFA, R7F100GPJ3CFA, R7F100GPK3CFA, R7F100GPL3CFA, R7F100GPN3CFA	#AA0, #BA0 #HA0	PLQP0100JC-A
		D	R7F100GPG2DFA, R7F100GPH2DFA, R7F100GPJ2DFA, R7F100GPK2DFA, R7F100GPL2DFA, R7F100GPN2DFA		
128 pins	128-pin plastic LFQFP (14 x 20 mm, 0.50-mm pitch)	С	R7F100GSJ3CFB, R7F100GSK3CFB, R7F100GSL3CFB, R7F100GSN3CFB	#AA0, #BA0 #HA0	PLQP0128KD-A
		D	R7F100GSJ2DFB, R7F100GSK2DFB, R7F100GSL2DFB, R7F100GSN2DFB		

Note 1. For the fields of application, see Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G23.


Note 2. The 36-pin plastic WFLGA products are in planning. Contact a Renesas Electronics sales office for details.

Note 3. The 64-pin plastic WFLGA products are in planning. Contact a Renesas Electronics sales office for details.

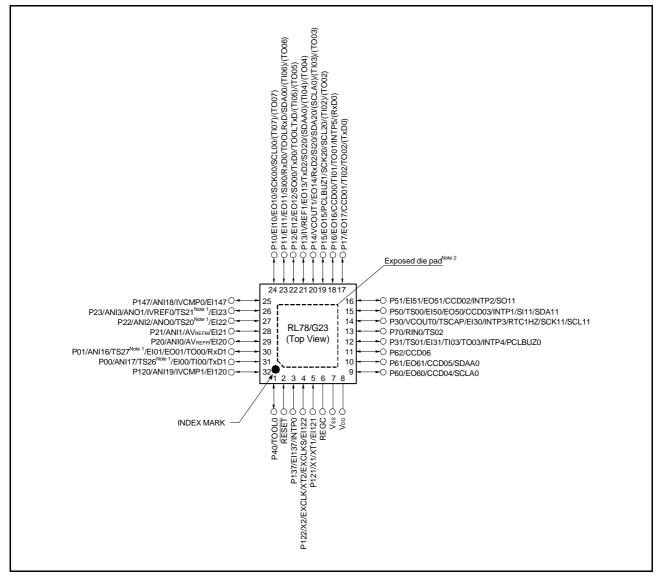
1.3 Pin Configuration (Top View)

1.3.1 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65-mm pitch)

Note Not present in products with 128 or fewer Kbytes of code flash memory.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).

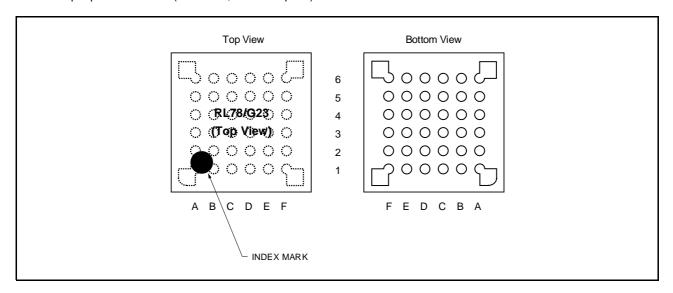

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Refer to Figure 4 - 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.

1.3.2 32-pin products

- 32-pin plastic HWQFN (5 x 5 mm, 0.50-mm pitch)
- 32-pin plastic LQFP (7 x 7 mm, 0.80-mm pitch)



- Note 1. Not present in products with 128 or fewer Kbytes of code flash memory.
- Note 2. The 32-pin plastic LQFP (7 x 7 mm, 0.80-mm pitch) products do not have an exposed die pad.
- Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

 Refer to Figure 4 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.
- Remark 3. It is recommended to connect an exposed die pad to Vss.

1.3.3 36-pin products

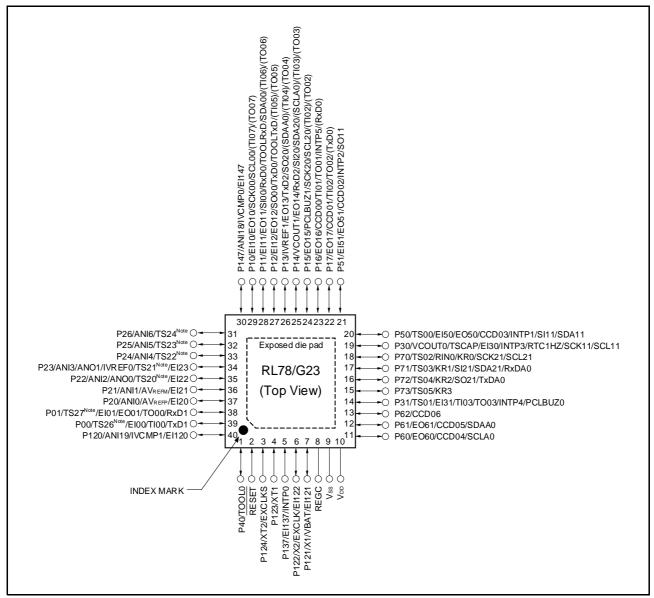
• 36-pin plastic WFLGA (4 × 4 mm, 0.50-mm pitch)

	Α	В	С	D	Е	F
6	P60/EO60/CCD04/ SCLA0	VDD	P121/X1/XT1/EI121	P122/X2/EXCLK/XT2/ EXCLKS/EI122	P137/EI137/INTP0	P40/TOOL0
5	P62/CCD06	P61/EO61/CCD05/SD AA0	Vss	REGC	RESET	P120/ANI19/IVCMP1/ EI120
4	P72/TS04/SO21/ TxDA0	P71/TS03/SI21/ SDA21/RxDA0	P14/VCOUT1/EO14/ RxD2/SI20/SDA20/ (SCLA0)/(TI03)/ (TO03)	P31/TS01/EI31/TI03/ TO03/INTP4/ PCLBUZ0	P00/TS26 ^{Note} /EI00/ TI00/TxD1	P01/TS27 ^{Note} /EI01/ E001/T000/RxD1
3	P50/TS00/EI50/EO50/ CCD03/INTP1/SI11/ SDA11	P70/TS02/RIN0/ SCK21/SCL21	P15/EO15/PCLBUZ1/ SCK20/SCL20/ (TI02)/(TO02)	P22/ANI2/ANO0/ TS20 ^{Note} /EI22	P20/ANI0/AVREFP/ EI20	P21/ANI1/AVREFM/ EI21
2	P30/VCOUT0/TSCAP/ EI30/INTP3/RTC1HZ/ SCK11/SCL11	P16/EO16/CCD00/ TI01/TO01/INTP5/ (RxD0)	P12/EI12/EO12/SO00/ TxD0/TOOLTxD/ (TI05)/(TO05)	P11/EI11/EO11/SI00/ RxD0/TOOLRxD/ SDA00/(TI06)/(TO06)	P24/ANI4/TS22Note	P23/ANI3/ANO1/ IVREF0/TS21Note/ EI23
1	P51/EI51/EO51/ CCD02/INTP2/ SO11	P17/EO17/CCD01/ Tl02/TO02/(TxD0)	P13/IVREF1/EO13/ TxD2/SO20/(SDAA0)/ (TI04)/(TO04)	P10/EI10/EO10/ SCK00/SCL00/ (TI07)/(TO07)	P147/ANI18/IVCMP0/ EI147	P25/ANI5/TS23 ^{Note}

Note Not present in products with 128 or fewer Kbytes of code flash memory.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.


Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Refer to Figure 4 - 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.

1.3.4 40-pin products

<R>

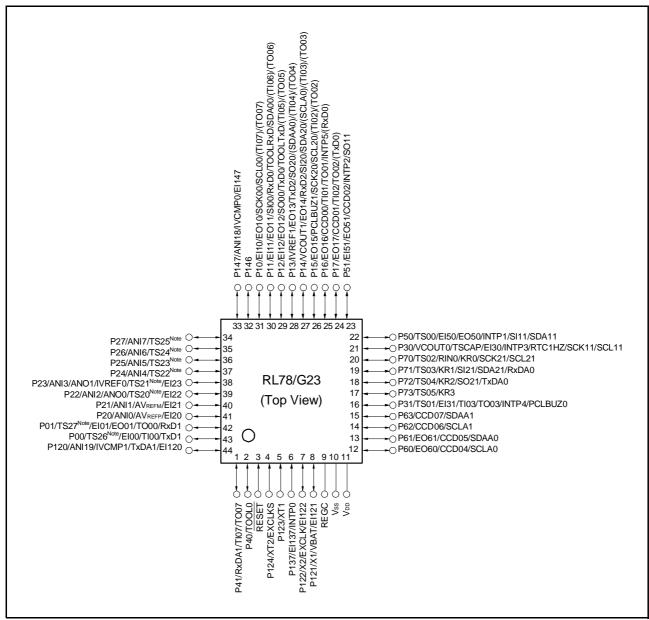
• 40-pin plastic HWQFN (6 x 6 mm, 0.50-mm pitch)

Note Not present in products with 128 or fewer Kbytes of code flash memory.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).


Refer to Figure 4 - 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.

Remark 3. It is recommended to connect an exposed die pad to Vss.

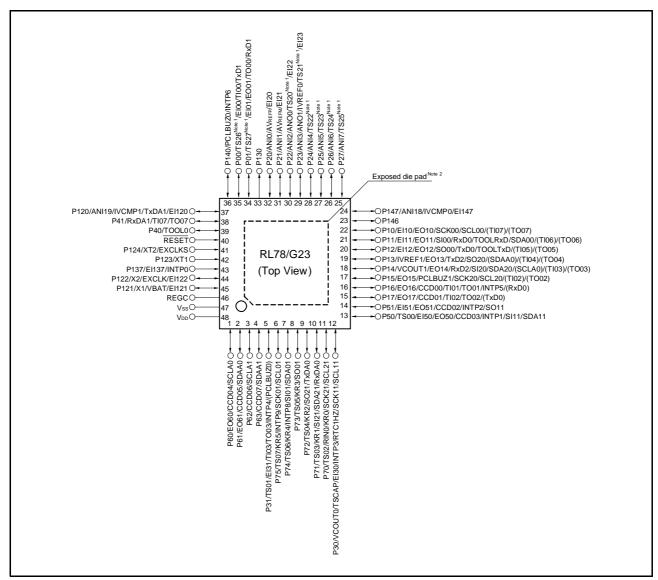
1.3.5 44-pin products

<R>

• 44-pin plastic LQFP (10 x 10 mm, 0.80-mm pitch)

Note Not present in products with 128 or fewer Kbytes of code flash memory.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

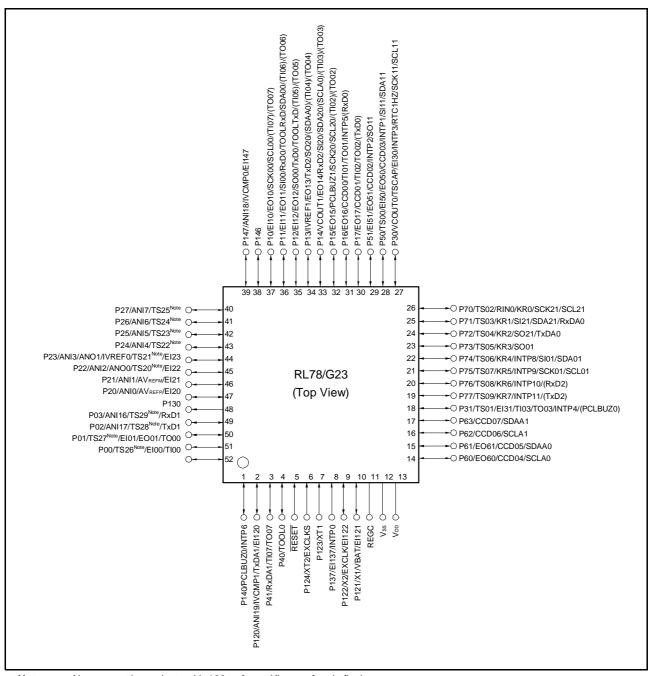

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Refer to Figure 4 - 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.

1.3.6 48-pin products

- 48-pin plastic LFQFP (7 x 7 mm, 0.50-mm pitch)
- 48-pin plastic HWQFN (7 x 7 mm, 0.50-mm pitch)



- Note 1. Not present in products with 128 or fewer Kbytes of code flash memory.
- <R> Note 2. The 48-pin plastic LFQFP (7 x 7 mm, 0.50-mm pitch) products do not have an exposed die pad.
 - Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).
 - Remark 1. For pin identification, see 1.4 Pin Identification.
 - Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

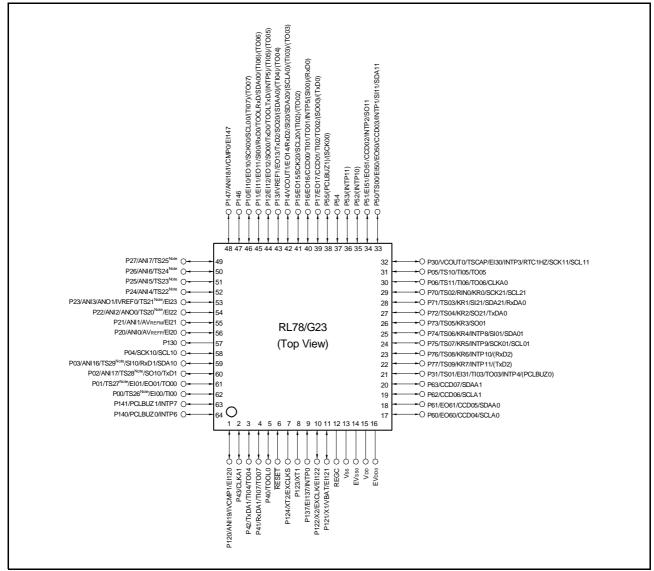
 Refer to Figure 4 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.
- <R> Remark 3. It is recommended to connect an exposed die pad to VSS.

1.3.7 52-pin products

• 52-pin plastic LQFP (10 x 10 mm, 0.65-mm pitch)

Note Not present in products with 128 or fewer Kbytes of code flash memory.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).

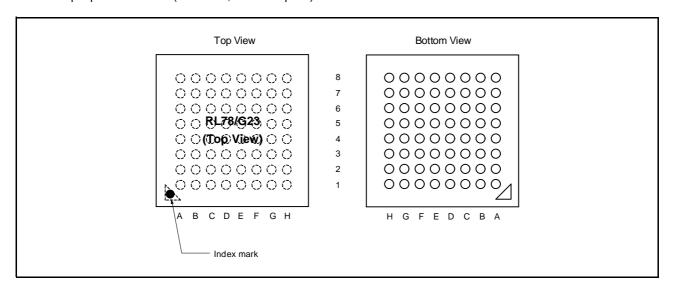

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

Refer to Figure 4 - 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.

1.3.8 64-pin products

- 64-pin plastic LQFP (12 x 12 mm, 0.65-mm pitch)
- 64-pin plastic LFQFP (10 x 10 mm, 0.50-mm pitch)



Note Not present in products with 128 or fewer Kbytes of code flash memory.

- Caution 1. Connect the EVsso pin to the same ground as the Vss pin.
- Caution 2. Make sure that the voltage on the VDD pin is no less than that on the EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

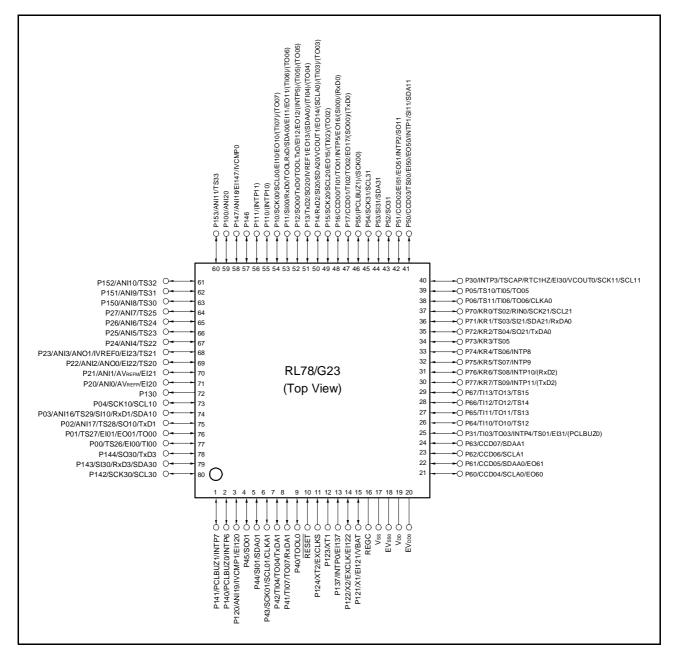
 Refer to Figure 4 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.

• 64-pin plastic WFLGA (5 × 5 mm, 0.50-mm pitch)

	Α	В	С	D	E	F	G	Н
8	EVDD0	EVsso	P121/X1/EI121/ VBAT	P122/X2/EXCLK /EI122	P137/INTP0/ El137	P123/XT1	P124/XT2/ EXCLKS	P120/ANI19/ IVCMP1/EI120
7	P60/CCD04/ SCLA0/EO60	VDD	Vss	REGC	RESET	P01/TS27 ^{Note} / EI01/EO01/ TO00	P00/TS26 ^{Note} / EI00/TI00	P140/PCLBUZ0/ INTP6
6	P61/CCD05/ SDAA0/EO61	P62/CCD06/ SCLA1	P63/CCD07/ SDAA1	P40/TOOL0	P41/TI07/TO07/ RxDA1	P43/CLKA1	P02/ANI17/ TS28 Note / SO10/TxD1	P141/PCLBUZ1/ INTP7
5	P77/KR7/TS09/ INTP11/(TxD2)	P31/TI03/TO03/ INTP4/TS01/ EI31/(PCLBUZ0)	P53/(INTP11)	P42/TI04/TO04/ TxDA1	P03/ANI16/ TS29 ^{Note} / SI10/RxD1/ SDA10	P04/SCK10/ SCL10	P130	P20/ANI0/ AVREFP/EI20
4	P75/KR5/TS07/ INTP9/SCK01/ SCL01	P76/KR6/TS08/ INTP10/(RxD2)	P52/(INTP10)	P54	P16/CCD00/ TI01/TO01/ INTP5/EO16/ (SI00)/(RxD0)	P21/ANI1/ AVREFM/EI21	P22/ANI2/ANO0 /EI22/TS20 Note	P23/ANI3/ANO1 /IVREF0/EI23/ TS21 Note
3	P70/KR0/TS02/ RIN0/SCK21/ SCL21	P73/KR3/TS05/ SO01	P74/KR4/TS06/ INTP8/SI01/ SDA01	P17/CCD01/ TI02/TO02/ EO17/(SO00)/ (TxD0)	P15/SCK20/ SCL20/EO15/ (TI02)/(TO02)	P12/SO00/TxD0 /TOOLTxD/EI12/ EO12/(INTP5)/ (TI05)/(TO05)	P24/ANI4/ TS22 Note	P26/ANI6/ TS24 Note
2	P30/INTP3/ TSCAP/ RTC1HZ/EI30/ VCOUT0/ SCK11/SCL11	P72/KR2/TS04/ SO21/TxDA0	P71/KR1/TS03/ SI21/SDA21/ RxDA0	P06/TS11/TI06/ TO06/CLKA0	P14/RxD2/ SI20/SDA20/ VCOUT1/EO14/ (SCLA0)/(TI03)/ (TO03)	P11/SI00/RxD0/ TOOLRxD/ SDA00/E111/ EO11/(TI06)/ (TO06)	P25/ANI5/ TS23Note	P27/ANI7/ TS25 Note
1	P05/TS10/TI05/ TO05	P50/CCD03/ TS00/EI50/ EO50/INTP1/ SI11/SDA11	P51/CCD02/ EI51/EO51/ INTP2/SO11	P55/(PCLBUZ1)/ (SCK00)	P13/TxD2/SO20 /IVREF1/EO13/ (SDAA0)/(TI04)/ (TO04)	P10/SCK00/ SCL00/E110/ EO10/(T107)/ (TO07)	P146	P147/ANI18/ EI147/IVCMP0

Note Not present in products with 128 or fewer Kbytes of code flash memory.

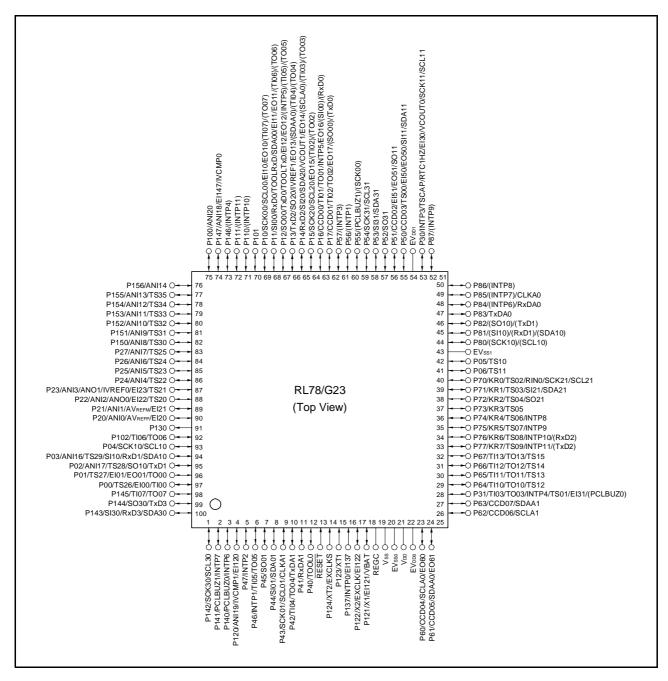
(Cautions and Remarks are listed on the next page.)


- Caution 1. Connect the EVsso pin to the same ground as the Vss pin.
- Caution 2. Make sure that the voltage on the \mbox{Vdd} pin is no less than that on the \mbox{EVddd} pin.
- Caution 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

 Refer to Figure 4 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.

1.3.9 80-pin products

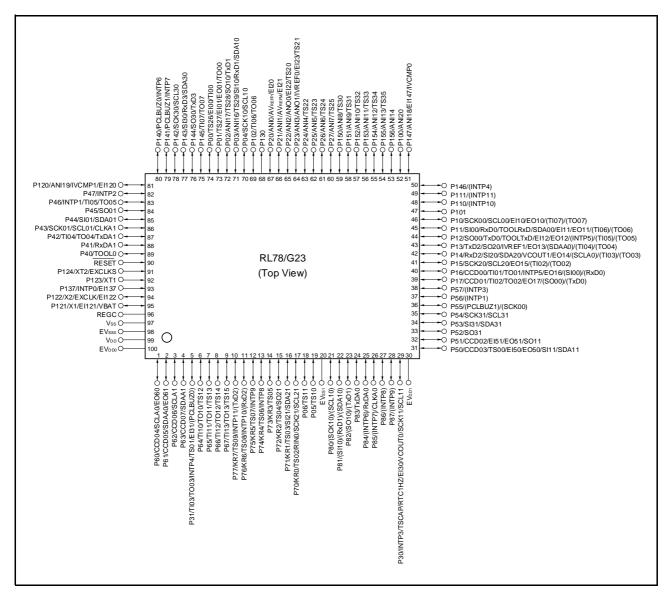
- 80-pin plastic LQFP (14 x 14 mm, 0.65-mm pitch)
- 80-pin plastic LFQFP (12 x 12 mm, 0.50-mm pitch)



- Caution 1. Connect the EVsso pin to the same ground as the Vss pin.
- Caution 2. Make sure that the voltage on the VDD pin is no less than that on the EVDDO pin.
- Caution 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

 Refer to Figure 4 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.

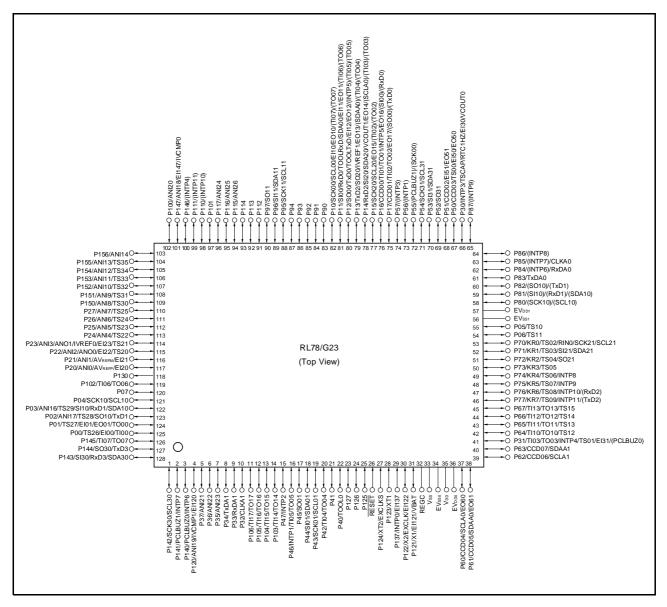
1.3.10 100-pin products


• 100-pin plastic LFQFP (14 x 14 mm, 0.50-mm pitch)

- Caution 1. Connect the EVsso and EVss1 pins to the same ground as the Vss pin.
- Caution 2. Make sure that the voltage on the VDD pin is no less than that on the EVDD0 and EVDD1 pins. Also make sure that the voltage on the EVDD0 is the same as that on the EVDD1 pin.
- Caution 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0, and EVDD1 pins and connect the Vss, EVss0, and EVss1 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

 Refer to Figure 4 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.

• 100-pin plastic LQFP (14 x 20 mm, 0.65-mm pitch)



- Caution 1. Connect the EVsso and EVss1 pins to the same ground as the Vss pin.
- Caution 2. Make sure that the voltage on the VDD pin is no less than that on the EVDD0 and EVDD1 pins. Also make sure that the voltage on the EVDD0 is the same as that on the EVDD1 pin.
- Caution 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0, and EVDD1 pins and connect the Vss, EVss0, and EVss1 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

 Refer to Figure 4 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.

1.3.11 128-pin products

• 128-pin plastic LFQFP (14 x 20 mm, 0.50-mm pitch)

- Caution 1. Connect the EVsso and EVss1 pins to the same ground as the Vss pin.
- Caution 2. Make sure that the voltage on the VDD pin is no less than that on the EVDD0 and EVDD1 pins. Also make sure that the voltage on the EVDD0 is the same as that on the EVDD1 pin.
- Caution 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0, and EVDD1 pins and connect the Vss, EVss0, and EVss1 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

 Refer to Figure 4 10 Format of Peripheral I/O Redirection Register (PIOR) (1/2) in the RL78/G23 User's Manual.

1.4 Pin Identification

ANI0 to ANI14, PCLBUZ0, PCLBUZ1: Programmable clock output/buzzer

ANI16 to ANI26: Output Analog input

REGC: ANO0. ANO1: Regulator capacitance Analog output

RESET: Reset AVREFM: Analog reference voltage minus

RIN0: AVREEP. Analog reference voltage plus IR remote controller input

RTC1HZ: Realtime clock correction clock (1 Hz) CCD00 to CCD07: Controlled current drive output

CLKA0, CLKA1: Asynchronous serial clock output Output

EI00. EI01. EI10 to EI12. RxD0 to RxD3.

El20 to El23, El30, El31, Receive data RxDA0, RxDA1:

EI50, EI51, SCLA0, SCLA1,

EI120 to EI122, SCK00, SCK01, SCK10,

EI137, EI147: Logic & event link controller input SCK11, SCK20, SCK21,

SCK30, SCK31: EO01, EO10 to EO17, Serial clock input/output

EO50, EO51, SCL00, SCL01, SCL10,

EO60. EO61: SCL11, SCL20, SCL21, Logic & event link controller output

EVDD0, EVDD1: Power supply for port SCL30, SCL31: Serial clock output

EVsso, EVss1: Ground for port SDAA0, SDAA1, SDA00, EXCLK: External clock input SDA01, SDA10, SDA11,

EXCLKS: External clock input SDA31: Serial data input/output

SDA20, SDA21, SDA30,

(subsystem clock) SI00, SI01, SI10, SI11,

(main system clock)

INTP0 to INTP11: Interrupt request from SI20, SI21, SI30, SI31: Serial data input

> Peripheral SO00, SO01, SO10,

IVCMP0, IVCMP1: Comparator input SO11, SO20, SO21,

IVREF0, IVREF1: Comparator reference input SO30, SO31: Serial data output

KR0 to KR7: Key return TSCAP: Touch sensor capacitance P00 to P07: Port 0 TI00 to TI07, TI10 to TI17: Timer input

P10 to P17: Port 1 TO00 to TO07,

P20 to P27: Port 2 TO10 to TO17: Timer output

P30 to P37: Port 3 TOOL0: Data input/output for tool

P40 to P47: Port 4 TOOLRxD, TOOLTxD: Data input/output for external device

P50 to P57: Port 5 TS00 to TS15, TS20 to TS35: Capacitive sensor

P60 to P67: Port 6 TxD0 to TxD3,

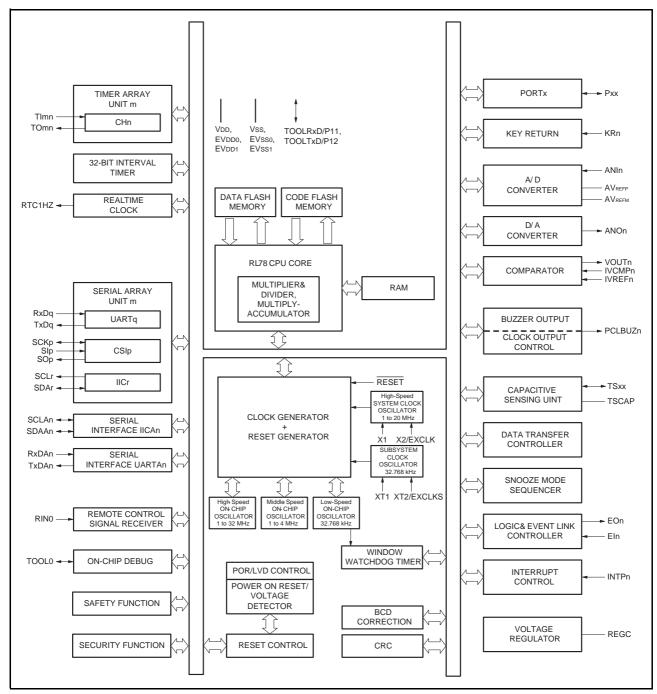
TxDA0, TxDA1: P70 to P77: Port 7 Transmit data

P80 to P87: Port 8 VBAT: Battery backup power supply

P90 to P97: VCOUT0, VCOUT1: Port 9 Comparator output P100 to P106: Port 10 VDD: Power supply

P110 to P117: Port 11 Vss: Ground

P120 to P127: Port 12 X1, X2: Crystal oscillator (main system clock) P130, P137: Port 13 XT1, XT2: Crystal oscillator (subsystem clock)


P140 to P147: Port 14

Port 15

P150 to P156:

1.5 Block Diagram

<R>

Caution 1. 32- to 128-pin products incorporate the remote control signal receiver.

Caution 2. 36- to 128-pin products incorporate the serial interface UARTA.

Caution 3. 40- to 128-pin products incorporate the key return function.

Remark m: Unit number, n: Channel number, p: CSI number, q: UART number, r: Simplified I²C number, xx: Port number

1.6 Outline of Functions

[30-, 32-, 36-, 40-, 44-, and 48-pin products]

Caution This outline describes the functions at the time when peripheral I/O redirection register (PIOR) is set to 00H.

(1/3)

			T		T						
	Item	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin				
		R7F100GAx	R7F100GBx	R7F100GCx	R7F100GEx	R7F100GFx	R7F100GGx				
Code flash m	•	96 to 256 KB	96 to 256 KB	96 to 256 KB	96 to 256 KB	96 to 768 KB	96 to 768 KB				
Data flash me	emory	8 KB	8 KB	8 KB	8 KB	8 KB	8 KB				
RAM		12 to 24 KB	12 to 24 KB	12 to 24 KB	12 to 24 KB	12 to 48 KB	12 to 48 KB				
Address space	ce	1 MB									
CPU/ peripheral hardware clock frequency (fcLK)	Main system clock	HS (high-speed main) mode: 1 to 32 MHz (VDD = 1.8 to 5.5 V) HS (high-speed main) mode: 1 to 4 MHzNote 1 (VDD = 1.6 to 5.5 V) LS (low-speed main) mode: 1 to 24 MHz (VDD = 1.8 to 5.5 V) LS (low-speed main) mode: 1 to 4 MHzNote 1 (VDD = 1.6 to 5.5 V) LP (low-power main) mode: 1 to 2 MHzNote 2 (VDD = 1.6 to 5.5 V)									
(ICLK)	Subsystem clock	SUB mode: 32.768 kHz (VDD = 1.6 to 5.5 V)									
Main system clock	High-speed system clock (fMX)	1 to 20 MHz									
	High-speed on-chip oscillator clock (fiH)	1 MHz, 2 MHz,	MHz, 2 MHz, 3 MHz, 4 MHz, 6 MHz, 8 MHz, 12 MHz, 16 MHz 24 MHz, 32 MHz								
Middle-speed on-chip oscillator clock (fim) 1 MHz, 2 MHz, 4 MHz											
Subsystem clock	Subsystem clock X (fsx)	32.768 kHz (VDD = 2.4 to 5.5 V) 32.768 kHz (VDD = 1.6 to 5.5 V))				
	Low-speed on-chip oscillator clock (fil)	32.768 kHz (ty	p.)								
General-purp	ose registers	8 bits × 32 registers (8 bits × 8 registers × 4 banks)									
Minimum inst	ruction execution time	0.03125 μs (at the 32-MHz operation with the high-speed on-chip oscillator clock (fιн))									
Instruction se	et	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc. 									
I/O port	Total number of pins	26	28	32	36	40	44				
	CMOS I/O	23 (N-ch open drain I/O [VDD withstand voltage]: 10)	24 (N-ch open drain I/O [VDD withstand voltage]: 10)	28 (N-ch open drain I/O [VDD withstand voltage]: 12)	30 (N-ch open drain I/O [VDD withstand voltage]: 12)	33 (N-ch open drain I/O [VDD withstand voltage]: 12)	36 (N-ch open drain I/O [VDD withstand voltage]: 13)				
	CMOS input	1	1	1	3	3	3				
	CMOS output	_	_	_	_	_	1				
	N-ch open drain I/O (withstand voltage: 6 V)	2	3	3	3	4	4				
	Output current control port	6	7	7	7	7	8				

<R>

(2/3)

		30-pin	32-pin	36-pin	40-pin	44-pin	48-pin				
	Item	R7F100GAx	R7F100GBx	R7F100GCx	R7F100GEx	R7F100GFx	R7F100GGx				
Timers	16-bit timer	8 channels	•	•	•	•	•				
	Watchdog timer	1 channel									
	Realtime clock (RTC)	1 channel									
	32-bit interval timer (TML32)	2 channels in 1	1 channel in 32-bit counter mode, 2 channels in 16-bit counter mode, 4 channels in 8-bit counter mode								
	Timer output	4 channels (PV 8 channels (PV	4 channels (PWM outputs: 3Note 3), 8 channels (PWM outputs: 7Note 3)Note 4 (PWM outputs: 7Note 3)Note 4								
	RTC output	1 channel	1 channel								
Clock output/	buzzer output	2									
		(at the 32-MH • 256 Hz, 512	Hz operation with Hz, 1.024 kHz, 2	Iz, 2 MHz, 4 MH of the main syste 2.048 kHz, 4.096 with the low-spe	m clock (fMAIN)) kHz, 8.192 kHz	z, 16.384 kHz, 32	2.768 kHz				
8-/10-/12-bit	resolution A/D converter	8 channels	8 channels	8 channels	9 channels	10 channels	10 channels				
D/A converte	r	2 channels	2 channels	2 channels	2 channels	2 channels	2 channels				
Comparator		2 channels	2 channels	2 channels	2 channels	2 channels	2 channels				
		Simplified SP channel [36-, 40-, and 4 Simplified SP Simplified SP Simplified SP channel [48-pin product Simplified SP SIMPLI	PI (CSI): 1 channel (CSI): 1 channel (CSI): 1 channel (CSI): 1 channel (CSI): 2 channel (CSI): 2 channel (CSI): 2 channel (CSI): 1 channel (CS	nel/simplified I ² C nel/simplified I ² C els/simplified I ² C nels/simplified I ² C nel/simplified I ² C	: 1 channel/UART 1 channel/UART : 1 channel/UAR : 1 channel/UAR : 2 channels/UAR C: 2 channels/UAR : 1 channel/UAR	RT: 1 channel (UART supportin RT: 1 channel RT: 1 channel RT (UART suppor	ting LIN-bus): 1				
	UARTA	_		1 channel	1 channel	2 channels	2 channels				
	I ² C bus	1 channel	1 channel	1 channel	1 channel	2 channels	2 channels				
Remote cont	rol signal receiver	_	1 channel	1 channel	1 channel	1 channel	1 channel				
Data transfer	controller (DTC)	30 sources	30 sources	32 sources	33 sources	35 sources	36 sources				
Logic and ev	ent link controller (ELCL)	1	•	•	•	•	•				
SNOOZE mo	de sequencer (SMS)	1									
Capacitive sensing unit	ROM size: 96 to 128 KB	2	3	5	6	6	8				
	ROM size: 192 to 768 KB	6	7	11	13	14	16				
Vectored	Internal	31	32	35	35	39	39				
interrupt sources	External	6	6	6	7	7	10				
Key interrupt		_	_	_	4	4	6				

<R>

<R>

(3/3)

	Item	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin				
	пеш	R7F100GAx	R7F100GBx	R7F100GCx	R7F100GEx	R7F100GFx	R7F100GGx				
Reset		Internal resetInternal resetInternal resetInternal resetInternal reset	Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detectors (LVD0 and LVD1) Internal reset by illegal instruction executionNote 5 Internal reset by RAM parity error Internal reset by illegal-memory access								
Power-on-r	reset circuit	Detection voltage • 1.50 V (typ.)									
Voltage detector	LVD0	Detection voltage • Rising edge: 1.69 V to 3.96 V (6 stages) • Falling edge: 1.65 V to 3.88 V (6 stages)									
	LVD1	Rising edge:	Detection voltage • Rising edge: 1.67 V to 4.16 V (18 stages) • Falling edge: 1.63 V to 4.08 V (18 stages)								
On-chip debugging		Available (tracing supported)									
Power supply voltage		VDD = 1.6 to 5.5 V (2D: Consumer applications), VDD = 1.8 to 5.5 V (3C: Industrial applications)									
Operating ambient temperature		TA = -40 to +85°C (2D: Consumer applications), TA = -40 to +105°C (3C: Industrial applications)									

- Note 1. Overwrite the flash memory during operation at 2 MHz or a lower frequency.
- Note 2. When the flash memory is to be overwritten, switch to high-speed main (HS) mode or low-speed main (LS) mode.
- Note 3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

 For details, see 7.9.3 Operation for the multiple PWM output function in the RL78/G23 User's Manual.
- **Note 4.** This applies when the setting of the PIOR0 bit is 1.
- **Note 5.** In normal operation, executing the instruction code FFH triggers an internal reset, but this is not the case during emulation by the in-circuit emulator or on-chip debugging emulator.

[52-, 64-, 80-, 100-, and 128-pin products]

Caution This outline describes the functions at the time when peripheral I/O redirection register (PIOR) is set to 00H.

(1/3)

		52-pin	64-pin	80-pin	100-pin	128-pin				
	Item	R7F100GJx	R7F100GLx	R7F100GMx	R7F100GPx	R7F100GSx				
Code flash n	nemory	96 to 768 KB	96 to 768 KB	128 to 768 KB	128 to 768 KB	256 to 768 KB				
Data flash m	emory	8 KB	8 KB	8 KB	8 KB	8 KB				
RAM		12 to 48 KB	12 to 48 KB	16 to 48 KB	16 to 48 KB	24 to 48 KB				
Address spa	се	1 MB								
CPU/ peripheral hardware clock frequency	Main system clock	HS (high-speed main) mode: 1 to 32 MHz (VDD = 1.8 to 5.5 V) HS (high-speed main) mode: 1 to 4 MHzNote 1 (VDD = 1.6 to 5.5 V) LS (low-speed main) mode: 1 to 24 MHz (VDD = 1.8 to 5.5 V) LS (low-speed main) mode: 1 to 4 MHzNote 1 (VDD = 1.6 to 5.5 V) LP (low-power main) mode: 1 to 2 MHzNote 2 (VDD = 1.6 to 5.5 V)								
(fCLK)	Subsystem clock	SUB mode: 32.768 kHz (VDD = 1.6 to 5.5 V)								
Main system	High-speed system clock (fMX)	1 to 20 MHz								
clock	High-speed on-chip oscillator clock (fIH)	1 MHz, 2 MHz, 3	1 MHz, 2 MHz, 3 MHz, 4 MHz, 6 MHz, 8 MHz, 12 MHz, 16 MHz 24 MHz, 32 MHz							
	Middle-speed on-chip oscillator clock (fIM)	1 MHz, 2 MHz, 4	1 MHz, 2 MHz, 4 MHz							
Subsystem	Subsystem clock X (fsx)	32.768 kHz (VDD	= 1.6 to 5.5 V)							
clock	Low-speed on-chip oscillator clock (fiL)	32.768 kHz (typ.)								
General-pur	pose registers	8 bits × 32 registe	ers (8 bits × 8 regis	ters × 4 banks)						
Minimum ins	struction execution time	0.03125 μs (at the 32-MHz operation with the high-speed on-chip oscillator clock (fiн))								
Instruction so	et	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc. 								
I/O port	Total number of pins	48	58	74	92	120				
	CMOS I/O	(N-ch open drain I/O [VDD withstand voltage]: 15)	(N-ch open drain I/O [EVDD withstand voltage]: 22Note 6/18Note 7)	66 (N-ch open drain I/O [EVDD withstand voltage]: 27)	84 (N-ch open drain I/O [EVDD withstand voltage]: 31)	(N-ch open drain I/O [EVDD withstand voltage]: 33)				
	CMOS input	3	3	3	3	3				
	CMOS output	1	1	1	1	1				
	N-ch open drain I/O (withstand voltage: 6 V)	4	4	4	4	4				
	Output current control port	8	8	8	8	8				

(2/3)

	ltem	52-pin	64-pin	80-pin	100-pin	128-pin			
	nem	R7F100GJx	R7F100GLx	R7F100GMx	R7F100GPx	R7F100GSx			
Timers	16-bit timer	8 channels		12 channels		16 channels			
	Watchdog timer	1 channel							
	Realtime clock (RTC)	1 channel							
	32-bit interval timer (TML32)	1 channel in 32-b 2 channels in 16- 4 channels in 8-b	bit counter mode,						
	Timer output	5 channels (PWM outputs: 4Note 3), 8 channels (PWM outputs: 7Note 3)Note 4	8 channels (PWM outputs: 7Note 3)	12 channels (PWM outputs: 10Note 3)		16 channels (PWM outputs: 14Note 3)			
	RTC output	1 channel							
Clock output	/buzzer output	2	2	2	2	2			
			 3.91 kHz, 7.81 kHz, 15.63 kHz, 2 MHz, 4 MHz, 8 MHz, 16 MHz (at the 32-MHz operation with the main system clock (fMAIN)) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (at the 32.768-kHz operation with the low-speed peripheral clock (fSXP)) 						
8-/10-/12-bit	8-/10-/12-bit resolution A/D converter		12 channels	17 channels	20 channels	26 channels			
D/A converte	er	2 channels	2 channels	2 channels	2 channels	2 channels			
Comparator		2 channels	2 channels	2 channels	2 channels	2 channels			
Serial interfa	Serial interface		CSI): 2 channels/sim CSI): 1 channels/sim CSI): 2 channels/sim CSI): 2 channels/sim CSI): 2 channels/sim 28-pin products] CSI): 2 channels/sim CSI): 2 channels/sim CSI): 2 channels/sim CSI): 2 channels/sim	implified I ² C: 1 char iplified I ² C: 2 chann implified I ² C: 2 chaimplified I ² C: 2 chann implified I ² C: 2 chann iplified I ² C: 2 chann iplified I ² C: 2 chann	innel/UART: 1 channels/UART (UART sumnels/UART: 1 channels/UART: 1 channels/UART sumnels/UART: 1 channels/UART: 1 channels/UART: 1 channels/UART sumnels/UART sum	nel upporting LIN-bus): annel upporting LIN-bus): annel annel upporting LIN-bus):			
	UARTA	2 channels	2 channels	2 channels	2 channels	2 channels			
	I ² C bus	2 channels	2 channels	2 channels	2 channels	2 channels			
Remote con	trol signal receiver	1 channel	1 channel	1 channel	1 channel	1 channel			
Data transfe	r controller (DTC)	36 sources	37 sources	39 sources	·	·			
Logic and ev	vent link controller (ELCL)	1							
SNOOZE mo	ode sequencer (SMS)	1							

<R>

(3/3)

<	R	>

<R>

Item		52-pin	64-pin	80-pin	100-pin	128-pin			
			R7F100GLx	R7F100GMx	R7F100GPx	R7F100GSx			
Capacitive	ROM size: 96 to 128 KB	10	12	30	32	32			
sensing unit	ROM size: 192 to 768 KB	20	22	30	32	32			
Vectored	Internal	39	39	44	44	48			
interrupt sources	External	12	13	13	13	13			
Key interrupt		8	8	8	8	8			
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detectors (LVD0 and LVD1) Internal reset by illegal instruction executionNote 5 Internal reset by RAM parity error Internal reset by illegal-memory access							
Power-on-re	set circuit	Detection voltage • 1.50 V (typ.)							
Voltage detector	LVD0	Detection voltage • Rising edge: 1.69 V to 3.96 V (6 stages) • Falling edge: 1.65 V to 3.88 V (6 stages)							
	LVD1	Detection voltage • Rising edge: 1.67 V to 4.16 V (18 stages) • Falling edge: 1.63 V to 4.08 V (18 stages)							
On-chip deb	On-chip debugging		Available (tracing supported)						
Power suppl	Power supply voltage		VDD = 1.6 to 5.5 V (2D: Consumer applications), VDD = 1.8 to 5.5 V (3C: Industrial applications)						
Operating ar	mbient temperature	TA = -40 to +85°C applications)	(2D: Consumer a	pplications), TA = -	40 to +105°C (3C:	Industrial			
		*							

- **Note 1.** Overwrite the flash memory during operation at 2 MHz or a lower frequency.
- Note 2. When the flash memory is to be overwritten, switch to high-speed main (HS) mode or low-speed main (LS) mode.
- Note 3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

 For details, see 7.9.3 Operation for the multiple PWM output function in the RL78/G23 User's Manual.
- Note 4. This applies when the setting of the PIOR0 bit is 1.
- **Note 5.** In normal operation, executing the instruction code FFH triggers an internal reset, but this is not the case during emulation by the in-circuit emulator or on-chip debugging emulator.
- Note 6. This only applies to the products with 96- and 128-Kbyte flash memory.
- Note 7. This only applies to the products with 192- to 768-Kbyte flash memory.

2. Electrical Characteristics TA = -40 to +105°C

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings

(1/2)

Item	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.1 and -0.3 to V _{DD} + 0.3Note 1	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	-0.3 to EVDD0 + 0.3 and -0.3 to VDD + 0.3 ^{Note 2}	V
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	VI3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	V
Output voltage	Vo1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-0.3 to EVDD0 + 0.3 and -0.3 to VDD + 0.3Note 2	V
	VO2	P20 to P27, P150 to P156	-0.3 to V _{DD} + 0.3Note 2	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EVDD0 + 0.3 and -0.3 to AVREFP + 0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI14	-0.3 to VDD + 0.3 and -0.3 to AVREFP + 0.3 Notes 2, 3	V

- **Note 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). The listed value is the absolute maximum rating of the REGC pin. Only use the capacitor connection. Do not apply a specific voltage to this pin.
- Note 2. This voltage must be no higher than 6.5 V.
- Note 3. The voltage on a pin in use for A/D conversion must not exceed AVREFP + 0.3.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark 1.** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.
- Remark 2. AVREFP refers to the positive reference voltage of the A/D converter.
- Remark 3. The reference voltage is Vss.

Absolute Maximum Ratings

(2/2)

Item	Symbols		Conditions	Ratings	Unit
High-level output current	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P121 to P124, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Low-level output current	lOL1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40Note	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P121 to P124, P150 to P156	1	mA
		Total of all pins]	5	mA
Ambient operating	TA	In normal operation mode		-40 to +105	°C
temperature		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	°C

Note

The rating for the following port pins is 80 mA when IoL1 = 40.0 mA is specified by the 40-mA port output control register (PTDC).

- Pins P04, P10, and P120 of the 64- to 100-pin package products with 384- to 768-Kbyte flash ROM
- Pin P110 of the 100-pin package products with 384- to 768-Kbyte flash ROM
- Pins P17 and P51 of the 30- to 52-pin package products
- Pin P70 of the 32- to 52-pin package products

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

<R>

2.2 Characteristics of the Oscillators

2.2.1 Characteristics of the X1 and XT1 oscillators

<R> (TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V (30- to 36-pin products), 1.6 V \leq VDD \leq 5.5 V (40- to 128-pin products), Vss = 0 V)

Item	Resonator	Conditions	Min.	Тур.	Max.	Unit
X1 clock oscillation allowable input cycle time Note	Ceramic resonator/ crystal resonator		0.05		1	μs
XT1 clock oscillation frequency (fxT)Note	Crystal resonator			32.768		kHz

Note The listed time and frequency indicate permissible ranges of the oscillator. For actual applications, request evaluation by the manufacturer of the oscillator circuit mounted on a board so you can use appropriate values. Refer to AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after release from the reset state, the user should use the oscillation stabilization time counter status register (OSTC) to check the X1 clock oscillation stabilization time. Specify the values for the oscillation stabilization time in the OSTC register and the oscillation stabilization time select register (OSTS) after having sufficiently evaluated the oscillation stabilization time with the resonator to be used.

2.2.2 Characteristics of the On-chip Oscillators

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = 0 \text{ V})$

Item	Symbol		Condition	S	Min.	Тур.	Max.	Unit
High-speed on-chip oscillator clock frequency	fıH				1		32	MHz
High-speed on-chip		HIPREC = 1	+85 to +105°C	1.8 V ≤ VDD ≤ 5.5 V	-2.0		+2.0	%
oscillator clock frequency accuracyNote 1				1.6 V ≤ VDD ≤ 5.5 V	-6.0		+6.0	%
			-20 to +85°C	1.8 V ≤ VDD ≤ 5.5 V	-1.0		+1.0	%
				1.6 V ≤ VDD ≤ 5.5 V	-5.0		+5.0	%
			-40 to -20°C	1.8 V ≤ VDD ≤ 5.5 V	-1.5		+1.5	%
				1.6 V ≤ VDD ≤ 5.5 V	-5.5		+5.5	%
		HIPREC = 0N	ote 4		-15		0	%
High-speed on-chip oscillator clock correction resolution						0.05		%
Middle-speed on-chip oscillator clock frequencyNote 2	fiM				1		4	MHz
Middle-speed on-chip oscillator clock frequency accuracyNote 1					-12		+12	%
Middle-speed on-chip oscillator clock correction resolution						0.15		%
Middle-speed on-chip oscillator frequency temperature coefficient							±0.17 Note 3	%/°C
Low-speed on-chip oscillator clock frequencyNote 2	fiL					32.768		kHz
Low-speed on-chip oscillator clock frequency accuracy Note 1					-15		+15	%
Low-speed on-chip oscillator clock correction resolution						0.3		%
Low-speed on-chip oscillator frequency temperature coefficient							±0.21 Note 3	%/°C

- Note 1. The accuracy values were obtained in testing of this product.
- **Note 2.** The listed values only indicate the characteristics of the oscillators. Refer to AC Characteristics for instruction execution time.
- Note 3. Guaranteed by characterization results.
- Note 4. The listed condition applies when the setting of the FRQSEL3 bit is 1.

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

(1/7)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Allowable high-level output current Note 1	IOH1 Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	1.6 V ≤ EVDD0 ≤ 5.5 V			-10.0 Note 2	mA	
		Total of P00 to P04, P07, P32 to P37, P40 to P47,	4.0 V ≤ EVDD0 ≤ 5.5 V			-55.0 Note 4	mA
		P102 to P106, P120, P125 to P127, P130,	2.7 V ≤ EVDD0 < 4.0 V			-10.0	mA
		P140 to P145	1.8 V ≤ EVDD0 < 2.7 V			-5.0	mA
		(when duty ≤ 70%Note 3)	1.6 V ≤ EVDD0 < 1.8 V			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67,	4.0 V ≤ EVDD0 ≤ 5.5 V			-80.0 Note 5	mA
		P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (when duty ≤ 70%Note 3)	2.7 V ≤ EVDD0 < 4.0 V			-19.0	mA
			1.8 V ≤ EVDD0 < 2.7 V			-10.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			-5.0	mA
		Total of all pins (when duty ≤ 70%Note 3)	1.6 V ≤ EVDD0 ≤ 5.5 V			-135.0 Note 6	mA
	ЮН2	Per pin for P20 to P27, P121, P122, P150 to P156	4.0 V ≤ VDD ≤ 5.5 V			-3.0 Note 2	mA
			2.7 V ≤ VDD < 4.0 V			-1.0 Note 2	mA
		1.8 V ≤ VDD < 2.7 V			-1.0 Note 2	mA	
			1.6 V ≤ VDD < 1.8 V			-0.5 Note 2	mA
		Total of all pins (when duty ≤ 70%Note 3)	4.0 V ≤ VDD ≤ 5.5 V			-20.0	mA
			2.7 V ≤ VDD < 4.0 V			-10.0	mA
			1.8 V ≤ VDD < 2.7 V			-5.0	mA
			1.6 V ≤ VDD < 1.8 V			-5.0	mA

- **Note 1.** Device operation is guaranteed at the listed currents even if current is flowing from the EVDD0, EVDD1, or VDD pin to an output pin.
- Note 2. The combination of these and other pins must also not exceed the value for maximum total current.
- **Note 3.** The listed currents apply when the duty cycle is no greater than 70%.

Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle.

•Total output current from the listed pins = (IoH \times 0.7)/(n \times 0.01) Example when n = 80% and IoH = -10.0 mA

Total output current from the listed pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

Note that the duty cycle has no effect on the current that is allowed to flow into a single pin. A current higher than the absolute maximum rating must not flow into a single pin.

(Notes, Caution, and Remark continue on the next page.)

- Note 4. The maximum value is -30 mA in the products for industrial applications (R7F100Gxx3Cxx) with an ambient operating temperature range of 85°C to 105°C.
- Note 5. The maximum value is -50 mA in the products for industrial applications (R7F100Gxx3Cxx) with an ambient operating temperature range of 85°C to 105°C.
- Note 6. The maximum values are respectively -100 mA and -60 mA in the products for industrial applications (R7F100Gxx3Cxx) with an ambient operating temperature range of -40°C to 85°C and of 85°C to 105°C.
 - Caution The following pins are not capable of the output of high-level signals in the N-ch open-drain mode.

 P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144
 - **Remark** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

 $(TA = -40 \text{ to } + 105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

(2/7)

Item	Symbol	Conditions	8	Min.	Тур.	Max.	Unit
Allowable low-level output currentNote 1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				20.0 Notes 2, 3	mA	
		Per pin for P60 to P63				15.0 Note 2	mA
		P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145 (when duty ≤ 70%Note 4)	4.0 V ≤ EVDD0 ≤ 5.5 V			70.0 Note 5	mA
			2.7 V ≤ EVDD0 < 4.0 V			15.0	mA
			1.8 V ≤ EVDD0 < 2.7 V			9.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			4.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101,	4.0 V ≤ EVDD0 ≤ 5.5 V			80.0 Note 5	mA
			2.7 V ≤ EVDD0 < 4.0 V			35.0	mA
		P110 to P117, P146, P147 (when duty ≤ 70%Note 4)	1.8 V ≤ EVDD0 < 2.7 V			20.0	mA
		(Wileff duty = 70%	1.6 V ≤ EVDD0 < 1.8 V			10.0	mA
	IOL2	Total of all pins (when duty ≤ 70% ^{Note 4})				150.0 Note 6	mA
		IOL2 Per pin for P20 to P27, P121, P122, P150 to P156	4.0 V ≤ VDD ≤ 5.5 V			8.5Note 2	mA
			2.7 V ≤ VDD < 4.0 V			1.5Note 2	mA
			1.8 V ≤ VDD < 2.7 V			0.6Note 2	mA
			1.6 V ≤ VDD < 1.8 V			0.4Note 2	mA
		Total of all pins	4.0 V ≤ VDD ≤ 5.5 V			20	mA
		(when duty ≤ 70% ^{Note 4})	2.7 V ≤ VDD < 4.0 V			20	mA
			1.8 V ≤ VDD < 2.7 V			15	mA
			1.6 V ≤ VDD < 1.8 V			10	mA

- **Note 1.** Device operation is guaranteed at the listed currents even if current is flowing from an output pin to the EVsso, EVss1, or Vss pin.
- Note 2. The combination of these and other pins must also not exceed the value for maximum total current.
- **Note 3.** The maximum rating for the following port pins is 40 mA when IOL1 = 40.0 mA is specified by the 40-mA port output control register (PTDC).
 - Pins P04, P10, and P120 of the 64- to 100-pin package products with 384- to 768-Kbyte flash ROM
 - Pin P101 of the 100-pin package products with 384- to 768-Kbyte flash ROM $\,$
 - Pins P17 and P51 of the 30- to 52-pin package products
 - Pin P70 of the 32- to 52-pin package products

(Notes and Remark continue on the next page.)

Note 4. The listed currents apply when the duty cycle is no greater than 70%.

Use the following formula to calculate the output current when the duty cycle is greater than 70%, where n is the duty cycle.

- •Total output current from the listed pins = (IoL \times 0.7)/(n \times 0.01)
 - Example when n = 80% and IoL = 10.0 mA
 - Total output current from the listed pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7 \text{ mA}$

Note that the duty cycle has no effect on the current that is allowed to flow into a single pin. A current higher than the absolute maximum rating must not flow into a single pin.

- Note 5. The maximum value is 40 mA in the products for industrial applications (R7F100Gxx3Cxx) with an ambient operating temperature range of 85°C to 105°C.
- Note 6. The maximum value is 80 mA in the products for industrial applications (R7F100Gxx3Cxx) with an ambient operating temperature range of 85°C to 105°C.
 - **Remark** The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(3/7)

Item	Symbol	Condition	ns	Min.	Тур.	Max.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0.8 EVDD0		EVDD0	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	2.2		EVDD0	V
		P53 to P55, P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	2.0		EVDD0	V
			TTL input buffer 1.6 V ≤ EVDD0 < 3.3 V	1.5		EVDD0	>
	VIH3	P20 to P27, P150 to P156		0.7 VDD		VDD	V
	VIH4	P60 to P63	0.7 EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EX	0.8 VDD		VDD	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	0		0.8	٧
		P53 to P55, P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EVDD0 < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156	0		0.3 VDD	V	
	VIL4	P60 to P63				0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS, RESET		0		0.2 VDD	V

Caution The maximum value of VIH of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(4/7)

Item	Symbol	Condition	ns	Min.	Тур.	Max.	Unit
Output voltage, high	Voн1	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -10.0 mA	EV _{DD0} - 1.5			V
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -3.0 mA	EVDD0 - 0.7			V
		P110 to P117, P120, P125 to P127, P130, P140 to P147	2.7 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -2.0 mA	EVDD0 - 0.6			V
		F 140 (0 F 147	1.8 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -1.5 mA	EVDD0 - 0.5			V
			1.6 V ≤ EVDD0 < 5.5 V, IOH1 = -1.0 mA	EVDD0 - 0.5			V
	VOH2	P20 to P27, P121, P122, P150 to P156	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH2} = -3.0 \text{ mA}$	V _{DD} - 0.7			V
			$2.7 \text{ V} \le \text{VDD} < 4.0 \text{ V},$ $\text{IOH}_2 = -1.0 \text{ mA}$	V _{DD} - 0.5			V
			$1.8 \text{ V} \le \text{VDD} < 2.7 \text{ V},$ $\text{IOH}_2 = -1.0 \text{ mA}$	V _{DD} - 0.5			٧
			$1.6 \text{ V} \le \text{VDD} < 1.8 \text{ V},$ IOH2 = -0.5 mA	V _{DD} - 0.5			V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high-level signals in the N-ch open-drain mode.

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

(5/7)

Item	Symbol		Conditions		Min.	Тур.	Max.	Unit
Output voltage, low	VOL1	P00 to P07, P10 to P17,	4.0 V ≤ EVDD0 ≤ 5.5 V	IOL1 = 20.0 mA			1.3	V
		P30 to P37, P40 to P47, P50 to P57, P64 to P67,		IOL1 = 40.0 mANote			1.3	V
		P70 to P77, P80 to P87, P90 to P97, P100 to P106,	4.0 V ≤ EVDD0 ≤ 5.5 V	IOL1 = 8.5 mA			0.7	V
		P110 to P117, P120,		IOL1 = 17.0 mANote			0.7	V
		P125 to P127, P130, P140 to P147	2.7 V ≤ EVDD0 ≤ 5.5 V	IOL1 = 3.0 mA			0.6	V
				IOL1 = 6.0 mANote			0.6	V
			2.7 V ≤ EVDD0 ≤ 5.5 V	IOL1 = 1.5 mA			0.4	V
				IOL1 = 3.0 mANote			0.4	V
			1.8 V ≤ EVDD0 ≤ 5.5 V	IOL1 = 0.6 mA			0.4	V
				IOL1 = 1.2 mANote			0.4	V
			1.6 V ≤ EVDD0 ≤ 5.5 V	IOL1 = 0.3 mA			0.4	V
				IOL1 = 0.6 mANote			0.4	V
	VOL2	P20 to P27, P121, P122,	4.0 V ≤ VDD ≤ 5.5 V, IOL:	2 = 8.5 mA			0.7	V
		P150 to P156	2.7 V ≤ VDD < 4.0 V, IOL:	2 = 1.5 mA			0.5	V
			1.8 V ≤ VDD < 2.7 V, IOL	2 = 0.6 mA			0.4	V
			1.6 V ≤ VDD < 1.8 V, IOL	2 = 0.4 mA			0.4	V
	VOL3	P60 to P63	4.0 V ≤ EVDD0 ≤ 5.5 V, I	OL3 = 15.0 mA			2.0	V
			4.0 V ≤ EVDD0 ≤ 5.5 V, I	OL3 = 5.0 mA			0.4	V
			2.7 V ≤ EVDD0 ≤ 5.5 V, I	OL3 = 3.0 mA			0.4	V
		<u> </u>	1.8 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 2.0 mA				0.4	V
			1.6 V ≤ EVDD0 ≤ 5.5 V, I	OL3 = 1.0 mA			0.4	V

Note This setting applies to the following port pins.

- Pins P04, P10, and P120 of the 64- to 100-pin package products with 384- to 768-Kbyte flash ROM
- Pin P101 of the 100-pin package products with 384- to 768-Kbyte flash ROM
- Pins P17, P51, and P70 of the 30- to 52-pin package products

(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(6/7)

Item	Symbol		Conditions					Unit
Output currentNote	CCDIOL	P16, P17, P50, P51	CCSm = 01H	4.0 V ≤ EVDD0 ≤ 5.5 V	1.0	1.8	2.6	mA
		P60 to P63		2.7 V ≤ EVDD0 < 4.0 V	0.8	1.5	2.3	mA
			CCSm = 02H	4.0 V ≤ EVDD0 ≤ 5.5 V	3.0	4.9	6.5	mA
				3.0 V ≤ EVDD0 < 4.0 V	2.7	4.3	5.9	mA
			CCSm = 03H	4.0 V ≤ EVDD0 ≤ 5.5 V	6.6	10.0	13.2	mA
				3.3 V ≤ EVDD0 < 4.0 V	6.0	9.1	12.1	mA
		P60 to P63	CCSm = 04H	4.0 V ≤ EVDD0 ≤ 5.5 V	10.2	15.0	19.8	mA
				3.3 V ≤ EVDD0 < 4.0 V	9.4	13.8	18.2	mA

Note The listed currents apply when the output current control function is enabled.

(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(7/7)

Item	Symbol	Conditions		Min.	Тур.	Max.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVDD0			0.5	μА
	ILIH2	P20 to P27, P137, P150 to P156, RESET	VI = VDD			0.5	μΑ
	Ілн3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD			0.5	μΑ
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVSS0			0.5	μА
	ILIL2	P20 to P27, P137, P150 to P156, RESET	VI = VSS			0.5	μΑ
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS			0.5	μΑ
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120 to P122, P125 to P127, P140 to P147	VI = EVSS0, In input port	10	20	100	kΩ

2.3.2 Supply current characteristics

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

<R> $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = 0 \text{ V})$

(1/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit			
Supply	IDD1	Operating	HS	fIH = 32 MHzNote 2	Basic	VDD = 5.0 V		1.3	_	mA			
current Note 1		mode	(high-speed main) mode		operation	VDD = 1.8 V		1.3	_				
					Normal	VDD = 5.0 V		3.0	5.0	mA			
					operation	VDD = 1.8 V		3.0	5.0				
			LS	fIH = 24 MHzNote 2	Normal	VDD = 5.0 V		2.3	3.8	mA			
			(low-speed main) mode		operation	VDD = 1.8 V		2.3	3.8				
				fIH = 16 MHzNote 2	Normal	VDD = 5.0 V		1.7	2.7	mA			
					operation	VDD = 1.8 V		1.7	2.7				
				fIM = 4 MHzNote 3	Normal	VDD = 5.0 V		0.4	0.7	mA			
					operation	VDD = 1.6 V		0.4	0.7				
		(ld m	LP	fIM = 2 MHzNote 3	Normal	VDD = 5.0 V		200	325	μΑ			
			(low-power main) mode		operation	VDD = 1.6 V		200	325				
							fIM = 1 MHzNote 3	Normal	VDD = 5.0 V		112	178	μΑ
			ПС		operation	VDD = 1.6 V		111	176				
					HS	fMX = 20 MHzNote 4,	Normal	VDD = 5.0 V		1.9	3.2	mA	
					(high-speed main) mode	Square wave input	operation	VDD = 1.8 V		1.9	3.2		
			LS (low-speed main) mode	fMX = 20 MHzNote 4,	Normal	VDD = 5.0 V		1.8	3.0	mA			
				Square wave input	operation	VDD = 1.8 V		1.7	3.0				
				fMX = 20 MHzNote 4,	Normal	VDD = 5.0 V		1.9	3.2	mA			
				Resonator connection	operation	VDD = 1.8 V		1.9	3.2				
				fMX = 10 MHzNote 4,	Normal	VDD = 5.0 V		0.9	1.6	mA			
				Square wave input	operation	VDD = 1.8 V		0.9	1.6				
				fMX = 10 MHzNote 4,	Normal	VDD = 5.0 V		1.0	1.7	mA			
				Resonator connection	operation	VDD = 1.8 V		1.0	1.7				
			fMX = 8 MHzNote 4,	Normal	VDD = 5.0 V		0.8	1.3	mA				
				Square wave input 0	operation	VDD = 1.8 V		0.7	1.3				
				fMX = 8 MHzNote 4,	Normal	VDD = 5.0 V		0.9	1.4	mA			
				Resonator connection	operation	VDD = 1.8 V		0.8	1.4				

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.

(Note and Remarks are listed on the next page.)

- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. flm: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

<R> (TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

(2/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit							
Supply	IDD1	Operating	Subsystem	fSUB = 32.768 kHzNote 2,	Normal	TA = -40°C		3.2	5.5	μΑ							
current Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		3.5	5.8								
						TA = +50°C		3.8	8.5								
						TA = +70°C		4.4	13.8								
						TA = +85°C		5.3	22.1								
						TA = +105°C		7.7	40.9								
				fsub = 32.768 kHzNote 3,	Normal	TA = -40°C		3.2	5.6	μA							
				Square wave input	operation	TA = +25°C		3.4	5.7								
						TA = +50°C		3.7	8.5								
							TA = +70°C		4.3	13.7							
							TA = +85°C		5.2	21.4							
						TA = +105°C		7.6	39.0								
				fsub = 32.768 kHzNote 3,	Normal	TA = -40°C		3.2	5.2	μΑ							
				Resonator connection oper	Resonator connection Operation	operation	TA = +25°C		3.4	5.4							
										TA = +50°C		3.7	7.7				
														TA = +70°C		4.3	13.4
													TA = +85°C		5.2	20.9]
						TA = +105°C		7.7	38.5								

- Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed on-chip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

<R> (TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

(3/4)

Item	Symbol		Con	ditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode	HS	fIH = 32 MHzNote 3	VDD = 5.0 V		0.54	1.93	mA
current ^{Note} 1	Note 2		(high-speed main) mode		VDD = 1.8 V		0.53	1.92	
			LS	fIH = 24 MHzNote 3	VDD = 5.0 V		0.45	1.50	mA
			(low-speed main) mode		VDD = 1.8 V		0.44	1.49	
				fIH = 16 MHzNote 3	VDD = 5.0 V		0.45	1.19	mA
					VDD = 1.8 V		0.44	1.18	
				fIM = 4 MHzNote 4	VDD = 5.0 V		0.08	0.26	mA
					VDD = 1.6 V		0.08	0.26	
			LP	fIM = 2 MHzNote 4	VDD = 5.0 V		33	120	μΑ
			(low-power main) mode		VDD = 1.6 V		33	120	
				fIM = 1 MHzNote 4	VDD = 5.0 V		29	76	μΑ
				VDD = 1.6 V		28	74		
			HS	fMX = 20 MHzNote 5,	VDD = 5.0 V		0.22	1.07	mA
			(high-speed main) mode	Square wave input	VDD = 1.8 V		0.19	1.03	
				fMX = 20 MHzNote 5,	VDD = 5.0 V		0.22	1.07	mA
			(low-speed main) mode	Square wave input	VDD = 1.8 V		0.19	1.03	
				fMX = 20 MHzNote 5,	VDD = 5.0 V		0.40	1.28	mA
				Resonator connection	VDD = 1.8 V		0.39	1.27	
				fMX = 10 MHzNote 5,	VDD = 5.0 V		0.14	0.57	mA
				Square wave input	VDD = 1.8 V		0.12	0.54	
				fMX = 10 MHzNote 5,	VDD = 5.0 V		0.24	0.69	mA
				Resonator connection	VDD = 1.8 V		0.23	0.68	
				fMX = 8 MHzNote 5,	VDD = 5.0 V		0.12	0.47	mA
		5	Square wave input	VDD = 1.8 V		0.10	0.44		
					VDD = 5.0 V		0.21	0.58	mA
				Resonator connection	VDD = 1.8 V		0.20	0.57	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVsso. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

(Remarks are listed on the next page.)

- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. flm: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

(1) 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

<R> (TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

(4/4)

Item	Symbol		(Conditions		Min.	Тур.	Max.	Unit		
Supply	IDD2	HALT mode	Subsystem clock	fsub = 32.768 kHzNote 3,	TA = -40°C		0.53	2.31	μΑ		
current Note 1	Note 2		operation mode	Low-speed on-chip oscillator operation	TA = +25°C		0.65	2.38			
					TA = +50°C		0.80	4.95			
					TA = +70°C		1.17	9.97			
					TA = +85°C		1.78	17.96			
					TA = +105°C		4.41	37.71			
				fsub = 32.768 kHz,	TA = -40°C		0.20	1.97	μΑ		
				Square wave input Note 4	TA = +25°C		0.29	2.00			
					TA = +50°C		0.54	5.33			
					TA = +70°C		0.99	10.94			
					TA = +85°C		1.70	19.62			
					TA = +105°C		4.10	41.82			
				fsub = 32.768 kHz,	TA = -40°C		0.21	2.04	μΑ		
				Resonator connection Note 5	TA = +25°C		0.33	2.28			
					TA = +50°C		0.49	4.98			
				TA = +70°C		1.05	11.36				
				TA = +85°C		1.76	20.04				
				TA = +105°C		4.20	42.52				
	IDD3	STOP mode	STOP mode	STOP mode	RAMSDS = 0Note 6		TA = -40°C		0.15	1.45	μΑ
					TA = +25°C		0.23	1.45			
					TA = +50°C		0.45	4			
					TA = +70°C		0.9	9			
					TA = +85°C		1.6	17			
					TA = +105°C		4	35			
			RAMSDS = 1Note 7		TA = -40°C		0.14	1.45	μΑ		
					TA = +25°C		0.21	1.45			
					TA = +50°C		0.4	3.5			
					TA = +70°C		0.8	8.5			
					TA = +85°C		1.4	15			
					TA = +105°C		3.2	30			
			RAMSDS = 1,		TA = -40°C		0.22	1.53	μΑ		
		128-Hz realtime clo	ck operation ^{Note 8}	TA = +25°C		0.32	1.56				
					TA = +50°C		0.53	3.62			
					TA = +70°C		0.94	8.64			
					TA = +85°C		1.55	15.15			
	1				TA = +105°C		3.40	30.20			

(Notes and Remarks are listed on the next page.)

- Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area.

 The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM.

 The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM.

 The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

<R> (TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

(1/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit	
Supply	IDD1	Operating	HS	fIH = 32 MHzNote 2	Basic	VDD = 5.0 V		1.4	_	mA	
current Note 1		mode	(high-speed main) mode		operation	VDD = 1.8 V		1.4	_		
					Normal	VDD = 5.0 V		3.0	5.0	mA	
					operation	VDD = 1.8 V		3.0	5.0		
			LS	fIH = 24 MHzNote 2	Normal	VDD = 5.0 V		2.3	3.8	mA	
			(low-speed main) mode		operation	VDD = 1.8 V		2.3	3.8		
				fiH = 16 MHzNote 2	Normal	VDD = 5.0 V		1.7	2.8	mA	
					operation	VDD = 1.8 V		1.7	2.7		
				fIM = 4 MHzNote 3	Normal	VDD = 5.0 V		0.4	0.7	mA	
					operation	VDD = 1.6 V		0.4	0.7		
			LP	fIM = 2 MHzNote 3	Normal	VDD = 5.0 V		203	329	μΑ	
			(low-power main) mode		operation	VDD = 1.6 V		202	328		
				fIM = 1 MHzNote 3	Normal	VDD = 5.0 V		115	181	μΑ	
			110		operation	VDD = 1.6 V		114	180		
				HS	fMX = 20 MHzNote 4,	Normal	VDD = 5.0 V		1.9	3.2	mA
					(high-speed main) mode	Square wave input	operation	VDD = 1.8 V		1.9	3.2
			LS (low-speed main) mode	fMX = 20 MHzNote 4,	Normal	VDD = 5.0 V		1.8	3.0	mA	
				Square wave input	operation	VDD = 1.8 V		1.7	3.0		
				fMX = 20 MHzNote 4,	Normal	VDD = 5.0 V		1.9	3.2	mA	
				Resonator connection	operation	VDD = 1.8 V		1.9	3.2		
				fMX = 10 MHzNote 4,	Normal	VDD = 5.0 V		0.9	1.6	mA	
				Square wave input	operation	VDD = 1.8 V		0.9	1.6		
				fMX = 10 MHzNote 4,	Normal	VDD = 5.0 V		1.0	1.7	mA	
				Resonator connection	operation	VDD = 1.8 V		1.0	1.7		
				, , ,	Normal	VDD = 5.0 V		0.8	1.3	mA	
				Square wave input of	operation	VDD = 1.8 V		0.7	1.3		
				fMX = 8 MHzNote 4,	Normal	VDD = 5.0 V		0.9	1.4	mA	
				Resonator connection	operation	VDD = 1.8 V		0.8	1.4		

- Note 1. The listed currents are the total currents flowing into VDD and EVDDo, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.

(Note and Remarks are listed on the next page.)

- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. flm: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

<R> (TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

(2/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	Subsystem	fSUB = 32.768 kHzNote 2,	Normal	TA = -40°C		3.3	6.1	μΑ
current Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		3.6	6.3	
				·		TA = +50°C		3.9	9.6	
						TA = +70°C		4.5	15.9	
						TA = +85°C		5.4	25.3	
						TA = +105°C		7.8	56.3	
				fsub = 32.768 kHzNote 3,	Normal	TA = -40°C		3.3	6.1	μΑ
				Square wave input	operation	TA = +25°C		3.5	6.4	
						TA = +50°C		3.8	9.6	
						TA = +70°C		4.4	16.1	
						TA = +85°C		5.3	26.4	
						TA = +105°C		7.8	57.0	
				fSUB = 32.768 kHzNote 3,	Normal	TA = -40°C		3.3	6.0	μΑ
				Resonator connection	operation	TA = +25°C		3.5	6.0	
						TA = +50°C		3.8	8.9	
						TA = +70°C		4.4	15.3	
						TA = +85°C		5.3	25.6	
						TA = +105°C		7.9	55.3	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVsso. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed on-chip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

<R> (TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

(3/4)

Item	Symbol		Con		Min.	Тур.	Max.	Unit	
Supply	IDD2	HALT mode	HS	fIH = 32 MHzNote 3	VDD = 5.0 V		0.57	1.97	mA
currentNote 1	Note 2		(high-speed main) mode		VDD = 1.8 V		0.56	1.96	
			LS	fIH = 24 MHzNote 3	VDD = 5.0 V		0.47	1.53	mA
			(low-speed main) mode		VDD = 1.8 V		0.47	1.52	
				fIH = 16 MHzNote 3	VDD = 5.0 V		0.48	1.22	mA
					VDD = 1.8 V		0.47	1.21	
				fIM = 4 MHzNote 4	VDD = 5.0 V		0.08	0.27	mA
					VDD = 1.6 V		0.08	0.26	
			LP	fIM = 2 MHzNote 4	VDD = 5.0 V		38	126	μΑ
			(low-power main) mode		VDD = 1.6 V		37	125	
				fIM = 1 MHzNote 4	VDD = 5.0 V		32	79	μΑ
				VDD = 1.6 V		32	79		
			HS (high-speed main)	fmx = 20 MHzNote 5,	VDD = 5.0 V		0.23	1.07	mA
			(high-speed main) mode	Square wave input	VDD = 1.8 V		0.19	1.03	
			LS	fmx = 20 MHzNote 5,	VDD = 5.0 V		0.23	1.07	mA
			(low-speed main) mode	Square wave input	VDD = 1.8 V		0.19	1.03	
				fmx = 20 MHzNote 5,	VDD = 5.0 V		0.41	1.30	mA
				Resonator connection	VDD = 1.8 V		0.40	1.28	
				fmx = 10 MHzNote 5,	VDD = 5.0 V		0.14	0.57	mA
				Square wave input	VDD = 1.8 V		0.12	0.54	
				fmx = 10 MHzNote 5,	VDD = 5.0 V		0.24	0.69	mA
			Resonator connection	VDD = 1.8 V		0.23	0.68		
			fmx = 8 MHzNote 5,	VDD = 5.0 V		0.12	0.47	mA	
			f	Square wave input	VDD = 1.8 V		0.10	0.44	
				fMX = 8 MHzNote 5, V	VDD = 5.0 V		0.21	0.58	mA
				Resonator connection	VDD = 1.8 V		0.20	0.57	

- Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

(Remarks are listed on the next page.)

- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. flm: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

<R> $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$

(4/4)

Item	Symbol		Conditions					Max.	Unit
Supply	IDD2	HALT mode	Subsystem clock	fSUB = 32.768 kHzNote 3,	TA = -40°C		0.62	2.94	μΑ
current Note 1	Note 2		operation mode	Low-speed on-chip oscillator operation	TA = +25°C		0.74	3.00	
					TA = +50°C		0.88	6.00	-
					TA = +70°C		1.22	12.01	
					TA = +85°C		2.69	22.92	
					TA = +105°C		5.08	54.47	
				fsuB = 32.768 kHz,	TA = -40°C		0.25	2.54	μΑ
				Square wave input Note 4	TA = +25°C		0.37	2.73	
					TA = +50°C		0.74	7.35	1
					TA = +70°C		1.33	15.13	1
					TA = +85°C		2.35	27.33	1
					TA = +105°C		4.81	62.95	1
				fsub = 32.768 kHz,	TA = -40°C		0.27	2.68	μΑ
				Resonator connection Note 5	TA = +25°C		0.39	2.87	1
					TA = +50°C		0.78	7.63	-
					TA = +70°C		1.34	15.20	
					TA = +85°C		2.35	27.33	
					TA = +105°C		4.67	61.97	1
	IDD3	STOP mode	RAMSDS = 0Note 6	TA = -40°C		0.19	2.00	μΑ	
				TA = +25°C		0.30	2.00		
					TA = +50°C		0.65	5.00	
					TA = +70°C		1.20	11.00	
					TA = +85°C		2.20	20.00	
					TA = +105°C		4.50	50.00	
			RAMSDS = 1 ^{Note 7}	ISDS = 1Note 7			0.18	2.00	μΑ
					TA = +25°C		0.29	2.00	
					TA = +50°C		0.60	4.50	
					TA = +70°C		1.10	10.00	
					TA = +85°C		2.00	19.00	
				TA = +105°C		4.00	45.00		
		RAMSDS = 1,		TA = -40°C		0.23	2.05	μΑ	
			128-Hz realtime clo	ock operation ^{Note 8}	TA = +25°C		0.40	2.11	
					TA = +50°C		0.72	4.62	
							1.23	10.13	1
					TA = +85°C		2.14	19.14	
					TA = +105°C		4.16	45.16	1

(Notes and Remarks are listed on the next page.)

- Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area.

 The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM.

 The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM.

 The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

<R> $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = 0 \text{ V})$

(1/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit		
Supply	IDD1	Operating	HS	fIH = 32 MHzNote 2	Basic	VDD = 5.0 V		1.6	_	mA		
current Note 1		mode	(high-speed main) mode		operation	VDD = 1.8 V		1.5	_	1		
					Normal	VDD = 5.0 V		3.5	5.6	mA		
					operation	VDD = 1.8 V		3.5	5.6			
			LS	fIH = 24 MHzNote 2	Normal	VDD = 5.0 V		2.6	4.2	mA		
			(low-speed main) mode		operation	VDD = 1.8 V		2.6	4.2			
				fIH = 16 MHzNote 2	Normal	VDD = 5.0 V		2.0	3.1	mA		
					operation	VDD = 1.8 V		1.9	3.1			
				fIM = 4 MHzNote 3	Normal	VDD = 5.0 V		0.5	0.9	mA		
					operation	VDD = 1.6 V		0.5	0.8			
					LP	fIM = 2 MHzNote 3	Normal Vo	VDD = 5.0 V		229	361	μΑ
		(low-power main) mode		operation	VDD = 1.6 V		227	358				
					Normal	VDD = 5.0 V		128	197	μA		
					operation	VDD = 1.6 V		125	193			
		HS (high-speed main) mode			_	fMX = 20 MHzNote 4,	Normal	VDD = 5.0 V		2.2	3.5	mA
			, , , , , , , , , , , , , , , , , , , ,	operation	VDD = 1.8 V		2.2	3.5				
			LS	fmx = 20 MHz Note 4 , Square wave input	Normal operation	VDD = 5.0 V		2.1	3.4	mA		
			(low-speed main) mode			VDD = 1.8 V		2.0	3.3	1		
				fmx = 20 MHzNote 4,	Normal	VDD = 5.0 V		2.2	3.6	mA		
				Resonator connection	operation	VDD = 1.8 V		2.2	3.5			
				fMX = 10 MHzNote 4,	Normal	VDD = 5.0 V		1.1	1.8	mA		
				Square wave input	operation	VDD = 1.8 V		1.1	1.8			
				fMX = 10 MHzNote 4,	Normal	VDD = 5.0 V		1.2	1.9	mA		
				Resonator connection	operation	VDD = 1.8 V		1.2	1.9			
			fMX = 8 MHzNote 4,	Normal	VDD = 5.0 V		0.9	1.5	mA			
			Square wave input	operation	VDD = 1.8 V		0.9	1.5				
				fMX = 8 MHzNote 4,	Normal	VDD = 5.0 V		1.0	1.6	mA		
				Resonator connection	operation	VDD = 1.8 V		1.0	1.6			

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVsso. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

(Remarks are listed on the next page.)

- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. flm: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

<R> (TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

(2/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	Subsystem	fSUB = 32.768 kHzNote 2,	Normal	TA = -40°C		3.8	7.7	μΑ
current Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		4.1	8.0	
					TA = +50°C		4.6	13.5		
					TA = +70°C		5.6	24.0		
						TA = +85°C		7.1	40.8	
					TA = +105°C		11.1	88.8		
		fsub = 32.768 kHzNote Square wave input		fSUB = 32.768 kHzNote 3,	Normal	TA = -40°C		3.8	7.7	μA
			Square wave input	operation	TA = +25°C		4.0	8.0		
					TA = +50°C		4.5	13.6		
						TA = +70°C		5.3	24.1	
						TA = +85°C		6.7	40.3	
						TA = +105°C		10.7	88.1	
				fSUB = 32.768 kHzNote 3,	Normal operation	TA = -40°C		3.8	7.4	μA
				Resonator connection		TA = +25°C		4.1	7.8	
					TA = +50°C		4.5	12.6		
					TA = +70°C		5.4	24.2		
						TA = +85°C		6.8	39.8	
						TA = +105°C		10.8	87.4	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVsso. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed on-chip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

<R> $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = 0 \text{ V})$

(3/4)

Item	Symbol		Con	ditions		Min.	Тур.	Max.	Unit	
Supply	IDD2	HALT mode	HS	fIH = 32 MHzNote 3	VDD = 5.0 V		0.60	2.00	mA	
current ^{Note} 1	Note 2		(high-speed main) mode		VDD = 1.8 V		0.59	1.99		
				LS	fIH = 24 MHzNote 3	VDD = 5.0 V		0.49	1.56	mA
			(low-speed main) mode		VDD = 1.8 V		0.48	1.55		
				fIH = 16 MHzNote 3	VDD = 5.0 V		0.49	1.24	mA	
					VDD = 1.8 V		0.48	1.23		
				fIM = 4 MHzNote 4	VDD = 5.0 V		0.09	0.28	mA	
				VDD = 1.6 V		0.09	0.27			
			LP	fIM = 2 MHzNote 4	VDD = 5.0 V		40	129	μΑ	
		(low-power main) mode		VDD = 1.6 V		37	125			
				fIM = 1 MHzNote 4	VDD = 5.0 V		33	80	μΑ	
				VDD = 1.6 V		32	79			
			HS	fMX = 20 MHzNote 5,	VDD = 5.0 V		0.25	1.10	mA	
			(high-speed main) mode	, , ,	VDD = 1.8 V		0.21	1.05		
			LS	fMX = 20 MHzNote 5,	VDD = 5.0 V		0.25	1.10	mA	
			(low-speed main) mode		VDD = 1.8 V		0.21	1.05		
				fMX = 20 MHzNote 5,	VDD = 5.0 V		0.41	1.30	mA	
				Resonator connection	VDD = 1.8 V		0.40	1.28		
				fMX = 10 MHzNote 5,	VDD = 5.0 V		0.15	0.59	mA	
				Square wave input	VDD = 1.8 V		0.13	0.55		
				fMX = 10 MHzNote 5,	VDD = 5.0 V		0.25	0.70	mA	
				Resonator connection fMX = 8 MHzNote 5, Square wave input	VDD = 1.8 V		0.24	0.69		
					VDD = 5.0 V		0.13	0.48	mA	
					VDD = 1.8 V		0.11	0.45		
				fMX = 8 MHzNote 5,	VDD = 5.0 V		0.22	0.59	mA	
				Resonator connection	VDD = 1.8 V		0.21	0.58		

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVsso. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

(Remarks are listed on the next page.)

- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. flm: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

<R> (TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = 0 V)

(4/4)

Item	Symbol		(Conditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode	Subsystem clock	fSUB = 32.768 kHzNote 3,	TA = -40°C		0.62	3.95	μΑ
current Note 1	Note 2		operation mode	Low-speed on-chip oscillator operation	TA = +25°C		0.78	4.00	
					TA = +50°C		1.03	9.16	
					TA = +70°C		1.62	19.34	
					TA = +85°C		3.50	37.35	
					TA = +105°C		6.77	85.36	
				fsub = 32.768 kHz,	TA = -40°C		0.25	3.55	μA
			Square wave input Note 4	TA = +25°C		0.41	3.73		
				TA = +50°C		0.90	10.93		
					TA = +70°C		1.76	23.42	
				Τ	TA = +85°C		2.92	41.07	
					TA = +105°C		6.27	94.30	
				fSUB = 32.768 kHz,	TA = -40°C		0.27	3.62	μA
			Resonator connection Note 5	TA = +25°C		0.43	3.87		
				TA = +50°C		0.92	11.07		
				TA = +70°C		1.79	23.63		
				TA = +85°C		2.94	41.21		
				TA = +105°C		6.28	94.37		
	IDD3	STOP mode	STOP mode RAMSDS = 0Note 6	•	TA = -40°C		0.21	3.00	μΑ
					TA = +25°C		0.35	3.00	
					TA = +50°C		0.75	8.00	
					TA = +70°C		1.60	18.00	
					TA = +85°C		2.80	34.00	
					TA = +105°C		6.00	80.00	
			RAMSDS = 1Note 7		TA = -40°C		0.19	3.00	μΑ
					TA = +25°C		0.32	3.00	
					TA = +50°C		0.65	7.00	
					TA = +70°C		1.25	17.00	
					TA = +85°C		2.10	30.00	
					TA = +105°C		4.50	70.00	
		RAMSDS = 1,		TA = -40°C		0.27	3.08	μΑ	
			128-Hz realtime clo	ck operationNote 8	TA = +25°C		0.42	3.10	
				TA = +50°C		0.76	7.11		
				TA = +70°C		1.38	17.13		
					TA = +85°C		2.23	30.13	1
					TA = +105°C		4.64	70.14	1

(Notes and Remarks are listed on the next page.)

- Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDO or Vss, EVsso. The currents in the Max. column include the peripheral operation current, but do not include those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They include the currents flowing into the RTC, but do not include those into the 32-bit interval timer and watchdog timer.
- Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area.

 The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM.

 The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM.

 The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

<R>

(4) Peripheral Functions (Common to all products)

(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(1/2)

Item	Symbol		Conditions	Min.	Тур.	Max.	Unit
High-speed on- chip oscillator	IFIHNote 1	HIPREC = 1			240	_	μA
operating current		HIPREC = 0			380	_	μΑ
Middle-speed on- chip oscillator operating current	FIMNote 1				20	_	μΑ
Low-speed on- chip oscillator operating current	FILNote 1				0.3		μA
RTC operating	IRTC Notes 1, 2, 3	frtcclk = 32.768 kHz			0.005	_	μA
current	Notes 1, 2, 3	frtcclk = 128 Hz			0.002	_	μA
32-bit interval timer operating current	IIT Notes 1, 2, 4				0.04	_	μΑ
Watchdog timer operating current	IWDT Notes 1, 2, 5	fıL = 32.768 kHz (typ.)			0.32	_	μA
A/D converter operating current IADC Notes 1, 6	When conversion at	Normal mode, AVREFP = VDD = 5.0 V		0.95	1.6	mA	
	Notes 1, 6	maximum speed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.75	mA
AVREFP current	IADREFNote 7	AVREFP = 5.0 V			52	_	μA
A/D converter internal reference voltage current	IADREFNote				114	_	μΑ
Temperature sensor operating current	I _{TMPS} Note				110	_	μA
D/A converter operating current	I _{DAC} Notes	Per channel			150	_	μΑ
Comparator operating current	I _{CMP} Notes				6	_	μA
LVD operating current	ILVD0 Notes 1, 10				0.02	_	μA
	ILVD1 Notes 1, 10				0.02	_	μΑ
Self-programming operating current	IFSPNotes				2.5	12.2	mA
Data flash rewrite operating current	IBGO Notes 1, 12				2.5	12.2	mA

<R>

<R>

<R>

(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Item	Symbol	Conditions				Тур.	Max.	Unit
SNOOZE mode	Isms	fIH = 32 MH:	30- to 64-pin package products with 96- to		1.1	_	mA	
sequencer	Notes 1, 13			128-Kbyte flash ROM				
operating current				30- to 64-pin package products with 192- to		1.1	_	
				256-Kbyte flash ROM and 80-pin package				
				product with 128- to 256-Kbyte flash ROM				
				44- to 80-pin package products with 384- to		1.4	_	
				768-Kbyte flash ROM and 100- to 128-pin				
				package products				
		fIL = 32.768	kHz	30- to 64-pin package products with 96- to		1.2	_	μA
				128-Kbyte flash ROM				
				30- to 64-pin package products with 192- to		1.2	_	
				256-Kbyte flash ROM and 80-pin package				
				product with 128- to 256-Kbyte flash ROM				
				44- to 80-pin package products with 384- to		1.6	_	
				768-Kbyte flash ROM and 100- to 128-pin				İ
				package products				
SNOOZE operating current	I _{SNOZ} Note 1	fıн=32 MHz	ADC to be in use	The ADC is shifting from the STOP mode to the SNOOZE mode. Note 14		0.6	0.81	mA
		Simplified SP SMSNote 19	The ADC is operating in the low-voltage mode. AVREFP = VDD = 3.0 V		1.2	1.56		
			Simplified SI	PI (CSI)/UART to be in use		0.7	0.92	mA
			SMSNote 19	30- to 64-pin package products with 96- to		1.6	_	mA
				128-Kbyte flash ROM				
				30- to 64-pin package products with 192- to		1.7	_	
				256-Kbyte flash ROM and 80-pin package				
				product with 128- to 256-Kbyte flash ROM				
				44- to 80-pin package products with 384- to		2.0	_	
				768-Kbyte flash ROM, and 100- to 128-pin				
				package products				
Remote control signal receiver operating current	IREM Notes 1, 15					0.03	_	μA
Low-speed peripheral clock supply current	ISXP Notes 1, 16	RTCLPC = ()			0.22	_	μA
Output current control operating current	ICCDA Notes 1, 17	The setting	of the CCDE r	register is not 00H.		100	_	μA
	ICCDP	Per single output current control port		Setting of the low-level output current: Hi-Z		30		μA
	Notes 1, 18			Setting of the low-level output current: 2 to 15 mA		200	_	μA
Operating current of the true random number generator	ITRNG Note 1					1.1	_	mA

(Notes and Remarks continue on the next page.)

- Note 1. This current flows into VDD.
- **Note 2.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, and high-speed system clock are stopped.
- Note 3. This current flows into the realtime clock (RTC). It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and IRTC, when the realtime clock is operating or in the HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current. IDD2 in the subsystem clock operation mode includes the operating current of the realtime clock.
- Note 4. This current only flows to the 32-bit interval timer. It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and IIT, when the 32-bit interval timer is operating or in the HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current.
- Note 5. This current only flows to the watchdog timer. It includes the operating current of the low-speed on-chip oscillator. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is operating.
- **Note 6.** This current only flows to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is operating or in the HALT mode.
- Note 7. This current flows into AVREFP.
- Note 8. This current only flows to the D/A converter.

 The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IDAC, when the D/A converter is operating or in the HALT mode.
- **Note 9.** This current only flows to the comparator. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator is in operation.
- Note 10. This current only flows to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- Note 11. This current only flows during self programming.
- Note 12. This current only flows while the data flash memory is being rewritten.
- Note 13. This current only flows into the SNOOZE mode sequencer. Note that the operating current of the low-speed on-chip oscillator and the XT1 oscillator are not included. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and ISMS, when the SNOOZE mode sequencer is operating or in the HALT mode.
- <R> Note 14. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G23 User's Manual.
 - Note 15. This current flows into the remote control signal receiver. It does not include the operating current of the low-speed on-chip oscillator or the XT1 oscillator. The supply current of the RL78 microcontrollers is the sum of either IDD1 or IDD2, and IIT, when the remote control signal receiver is operating or in the HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be included in the supply current.
- Note 16. This current is added to the supply current in the HALT mode when the setting of RTCLPC is 0 in the STOP mode, or when the setting of RTCLPC is 0 with the subsystem clock X (fsx) selected as the CPU clock, while the subsystem clock X (fsx) is oscillating.
 - Note 17. This current is added to the supply current when the output voltage control port is set.
 - Note 18. This current does not include the current flowing into the I/O port pins.
- Note 19. The listed values apply when the SNOOZE mode sequencer is in normal operation equivalent to IDD1. They do not include the current flowing into the peripheral functions other than the SNOOZE mode sequencer.
 - Remark 1. fil: Low-speed on-chip oscillator clock frequency
 - Remark 2. fsx: Subsystem clock X frequency
 - Remark 3. fclk: CPU/peripheral hardware clock frequency
 - Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

2.4 AC Characteristics

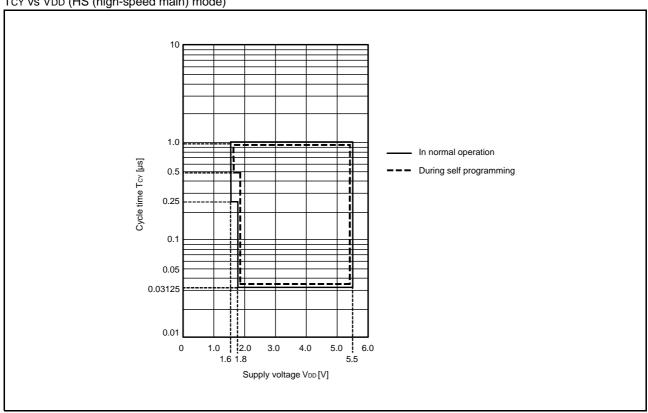
(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

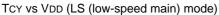
Item	Symbol	Conditions			Min.	Тур.	Max.	Unit
Instruction cycle	Tcy	Main system clock		1.8 V ≤ VDD ≤ 5.5 V	0.03125		1	μs
(minimum instruction execution time)		(fMAIN) operation	(high-speed main) mode	1.6 V ≤ VDD ≤ 1.8 V	0.25		1	μs
			LS	1.8 V ≤ VDD ≤ 5.5 V	0.04167		1	μs
			(low-speed main) mode	1.6 V ≤ VDD ≤ 1.8 V	0.25		1	μs
			LP (low-power main) mode	1.6 V ≤ VDD ≤ 5.5 V	0.5		1	μs
		Subsystem clock (f	SUB) operation	1.8 V ≤ VDD ≤ 5.5 V	26.041	30.5	31.3	μs
		In the self	HS	1.8 V ≤ VDD ≤ 5.5 V	0.03125		1	μs
		programming mode	(high-speed main) mode	1.6 V ≤ VDD ≤ 1.8 V	0.5		1	μs
			LS	1.8 V ≤ VDD ≤ 5.5 V	0.04167		1	μs
			(low-speed main) mode	1.6 V ≤ VDD ≤ 1.8 V	0.5		1	μs
External system clock	fEX	1.8 V ≤ VDD ≤ 5.5 \	/	1	1.0		20.0	MHz
frequency		1.6 V ≤ VDD < 1.8 V					4.0	MHz
	fexs						38.4	kHz
input high-level width, low-level width	texH,							ns
	tEXL							ns
	tEXHS, tEXLS				13.7			μs
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	ttih, ttil				1/fмск + 10			_{NS} Note
TO00 to TO07, TO10 to	fто	HS (high-speed ma	,	4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
TO17 output frequency		LS (low-speed mai	n) mode	2.7 V ≤ EVDD0 < 4.0 V			8	MHz
				1.8 V ≤ EVDD0 < 2.7 V			4	MHz
				1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		LP (low-power mai	n) mode	1.6 V ≤ EVDD0 ≤ 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1	fPCL	HS (high-speed ma		4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
output frequency		LS (low-speed mai	n) mode	2.7 V ≤ EVDD0 < 4.0 V			8	MHz
				1.8 V ≤ EVDD0 < 2.7 V			4	MHz
				1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		LP (low-power mai	n) mode	1.6 V ≤ EVDD0 < 1.8 V			2	MHz
Interrupt input high-level	finth,	INTP0		1.6 V ≤ VDD ≤ 5.5 V	1			μs
width, low-level width	fINTL	INTP1 to INTP11		1.6 V ≤ EVDD0 ≤ 5.5 V	1			μs
Key interrupt input low-	fkrh,	KR0 to KR7		1.8 V ≤ EVDD0 ≤ 5.5 V	250			ns
level width	fkrl	1.6 V ≤ EVDD0 < 1.8 V		1			μs	
RESET low-level width	fRSL				10			μs

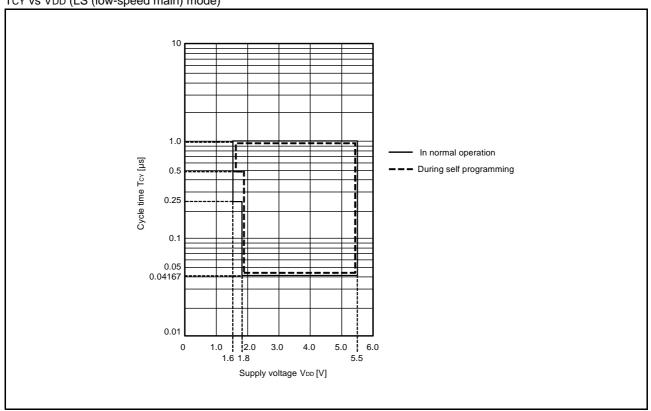
(Note and Remark are listed on the next page.)

Note The following conditions are required for low voltage interface when EVDD0 < VDD.

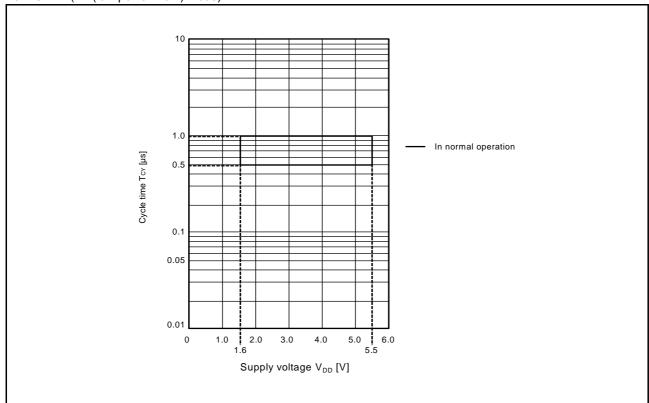
1.8 V \leq EVDD0 < 2.7 V: 125 ns min. 1.6 V \leq EVDD0 < 1.8 V: 250 ns min.

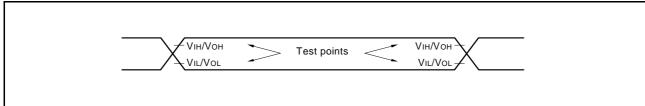

Remark fMCK: Timer array unit operating clock frequency

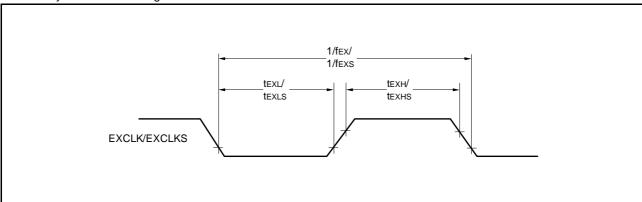

(To set this operating clock, use the CKSmn0 and CKSmn1 bits of the timer mode register mn (TMRmn) (m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3).)

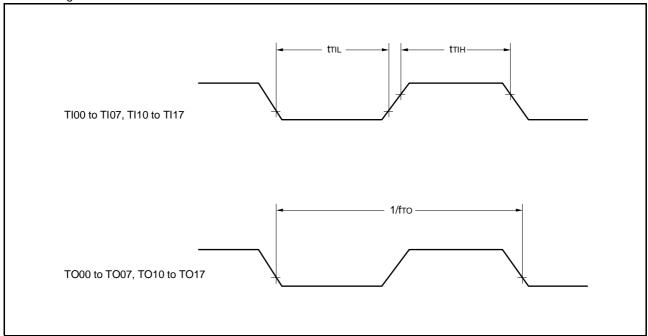


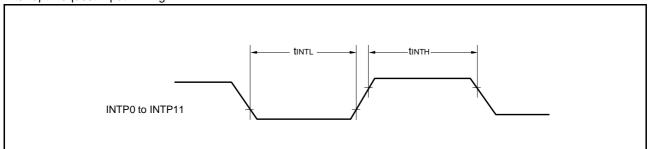
Minimum Instruction Execution Time during Main System Clock Operation

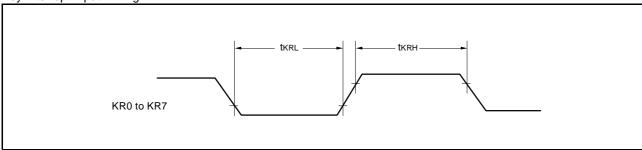

Tcy vs Vdd (HS (high-speed main) mode)

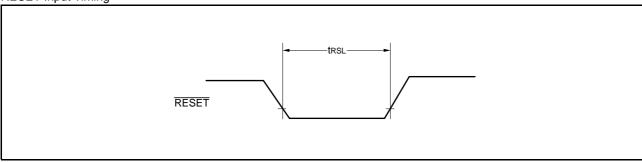



TCY vs VDD (LP (low-power main) mode)

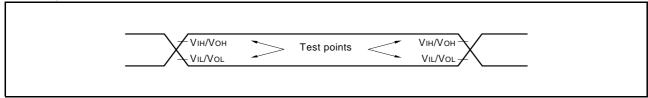

AC Timing Test Points


External System Clock Timing


TI/TO Timing


Interrupt Request Input Timing

Key Interrupt Input Timing



RESET Input Timing

2.5 Characteristics of the Peripheral Functions

AC Timing Test Points

2.5.1 Serial array unit

(1) In UART communications with devices operating at same voltage levels

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

Item Syı	Symbol	Conditions	(High-Sp	HS leed Main) ode	(Low-Sp	LS eed Main) ode	(Low-Po	_P wer Main) ode	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Transfer rate Note 1		1.6 V ≤ EVDD0 ≤ 5.5 V		fMCK/6 Note 2		fMCK/6 Note 2		fMCK/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLKNote 3		5.3		4		0.33	Mbps

Note 1. The transfer rate in the SNOOZE mode is within the range from 4800 to 9600 bps.

Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.

 $2.4 \text{ V} \leq \text{EVDD0} < 2.7 \text{ V}$: 2.6 Mbps max.

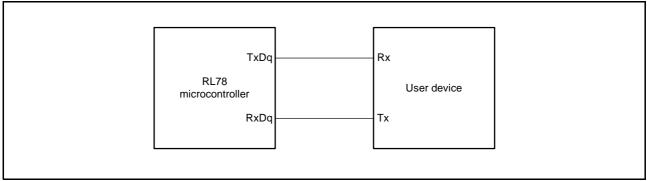
 $1.8 \text{ V} \leq \text{EVDD0} < 2.4 \text{ V}$: 1.3 Mbps max.

1.6 V ≤ EVDD0 < 1.8 V: 0.6 Mbps max.

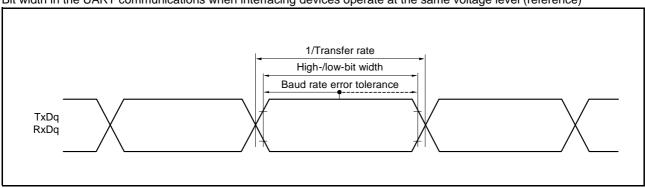
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are as follows.

HS (high-speed main) mode: 32 MHz (1.8 V ≤ VDD ≤ 5.5 V)

 $4 \text{ MHz} (1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$


LS (low-speed main) mode: 24 MHz (1.8 V \leq VDD \leq 5.5 V)

 $4 \text{ MHz} (1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$


LP (low-power main) mode: 2 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Connection in the UART communications with devices operating at same voltage levels

Bit width in the UART communications when interfacing devices operate at the same voltage level (reference)

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)

Remark 2. fMCK: Serial array unit operation clock frequency

(To set this operating clock, set the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13).)

(2) In simplified SPI (CSI) communications in the master mode with devices operating at same voltage levels with the internal SCKp clock (the ratings below are only applicable to CSI00)

Item	Symbol	C	Conditions	HS (High-Spee Mode	d Main)	LS (Low-Spee Mod	d Main)	LP (Low-Powe Mod	,	Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tKCY1 ≥ 2/fCLK	4.0 V ≤ EVDD0 ≤ 5.5 V	62.5		83.3		1000		ns
			2.7 V ≤ EVDD0 ≤ 5.5 V	83.3		125		1000		ns
SCKp high-/ low-level width	tKH1, tKL1	4.0 V ≤ EVDD0	≤ 5.5 V	tKCY1/2 - 7		tKCY1/2 - 10		tKCY1/2 - 50		ns
		2.7 V ≤ EVDD0	i≤ 5.5 V	tKCY1/2 - 10		tKCY1/2 - 15		tKCY1/2 - 50		ns
SIp setup time	tSIK1	4.0 V ≤ EVDD0) ≤ 5.5 V	23		33		110		ns
(to SCKp↑)Note 1		2.7 V ≤ EVDD0) ≤ 5.5 V	33		50		110		ns
SIp hold time (from SCKp↑) Note 1	tKSI1	2.7 V ≤ EVDD0	≤ 5.5 V	10		10		10		ns
Delay time from SCKp↓ to SOp outputNote 2	tKSO1	C = 20 pFNote	3		10		10		10	ns

- Note 1. The setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the Slp setup time becomes "to SCKp↓" and that for the Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **Note 3.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using the port input mode register g (PIMg) and the port output mode register g (POMg).
- Remark 1. The listed times are only valid when the peripheral I/O redirect function of CSI00 is not in use.
- $\textbf{Remark 2.} \ p: CSI \ number \ (p=00), \ m: \ Unit \ number \ (m=0), \ n: \ Channel \ number \ (n=0), \ g: \ PIM \ and \ POM \ numbers \ (g=1)$
- Remark 3. fMCK: Serial array unit operation clock frequency

 (To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number (mn = 00).)

(3) In simplified SPI (CSI) communications in the master mode with devices operating at same voltage levels with the internal SCKp clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

ltem	Symbol	(Conditions	HS (High-Spee Mod	d Main)	LS (Low-Sp Mair Mod	peed n)	LP (Low-Powe Mod	er Main)	Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tKCY1 ≥ 4/fCLK	2.7 V ≤ EVDD0 ≤ 5.5 V	125		166		2000		ns
			2.4 V ≤ EVDD0 ≤ 5.5 V	250		250		2000		ns
			1.8 V ≤ EVDD0 ≤ 5.5 V	500		500		2000		ns
			1.6 V ≤ EVDD0 ≤ 5.5 V	1000		1000		2000		ns
SCKp high-/ low-level width	tKH1, tKL1	4.0 V ≤ EVDD0	≤ 5.5 V	tKCY1/2 - 12		tKCY1/2 - 21		tKCY1/2 - 50		ns
		2.7 V ≤ EVDD0	≤ 5.5 V	tKCY1/2 - 18		tKCY1/2 - 25		tKCY1/2 - 50		ns
		2.4 V ≤ EVDD0	≤ 5.5 V	tKCY1/2 - 38		tKCY1/2 - 38		tKCY1/2 - 50		ns
		1.8 V ≤ EVDD0	≤ 5.5 V	tKCY1/2 - 50		tKCY1/2 - 50		tKCY1/2 - 50		ns
		1.6 V ≤ EVDD0	≤ 5.5 V	tKCY1/2 - 100		tKCY1/2 - 100		tKCY1/2 - 100		ns
SIp setup time	tSIK1	4.0 V ≤ EVDD0	≤ 5.5 V	44		54		110		ns
(to SCKp↑)Note 1		2.7 V ≤ EVDD0	≤ 5.5 V	44		54		110		ns
		2.4 V ≤ EVDD0	≤ 5.5 V	75		75		110		ns
		1.8 V ≤ EVDD0	≤ 5.5 V	110		110		110		ns
		1.6 V ≤ EVDD0	≤ 5.5 V	220		220		220		ns
SIp hold time (from SCKp↑) Note 1	tKSI1	1.6 V ≤ EVDD0	≤ 5.5 V	19		19		19		ns
Delay time from SCKp↓ to SOp outputNote 2	tKSO1	1.6 V ≤ EVDD0 C = 30 pF ^{Note}			25		25		25	ns

- Note 1. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the SIp setup time becomes "to SCKp↓" and that for the SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using the port input mode register g (PIMg) and the port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)
- Remark 2. fMCK: Serial array unit operation clock frequency

 (To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number = 00 to 03, 10 to 13).)

(4) In simplified SPI (CSI) communications in the slave mode with devices operating at same voltage levels with the SCKp external clock

$$(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$$

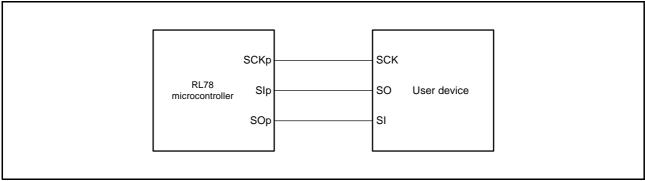
(1/2)

Item Symbo		Conditio	HS (High-Speed Mode	,	LS (Low-Spe Main) Mode		LP (Low-Power Main) Mode		Unit	
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY2	4.0 V ≤ EVDD0 ≤ 5.5 V	20 MHz < fmck	8/fmck		8/fмск		_		ns
Note 4			fMCK ≤ 20 MHz	6/fmck		6/fмск		6/fmck		ns
		2.7 V ≤ EVDD0 ≤ 5.5 V	16 MHz < fmck	8/fмск		8/fмск		_		ns
			fMCK ≤ 16 MHz	6/fмск		6/fmck		6/fmck		ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		6/fмск and 500		6/fмcк and 500		6/fмск and 500		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V		6/fмск and 750		6/fмcк and 750		6/fмск and 750		ns
		1.6 V ≤ EVDD0 ≤ 5.5 V		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/	tKH2,	4.0 V ≤ EVDD0 ≤ 5.5 V		tKCY2/2 - 7		tKCY2/2 - 7		tKCY2/2 - 7		ns
low-level width	tKL2	2.7 V ≤ EVDD0 ≤ 5.5 V		tKCY2/2 - 8		tKCY2/2 - 8		tKCY2/2 - 8		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V		tKCY2/2 - 18		tKCY2/2 - 18		tKCY2/2 - 18		ns
		1.6 V ≤ EVDD0 ≤ 5.5 V		tKCY2/2 - 66		tKCY2/2 - 66		tKCY2/2 - 66		ns

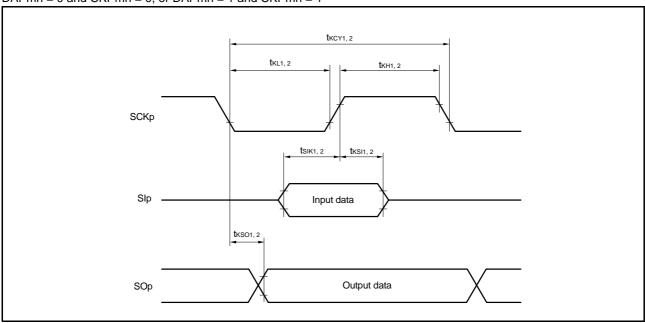
(Notes, Caution, and Remarks are listed on the next page.)

(4) In simplified SPI (CSI) communications in the slave mode with devices operating at same voltage levels with the SCKp external clock

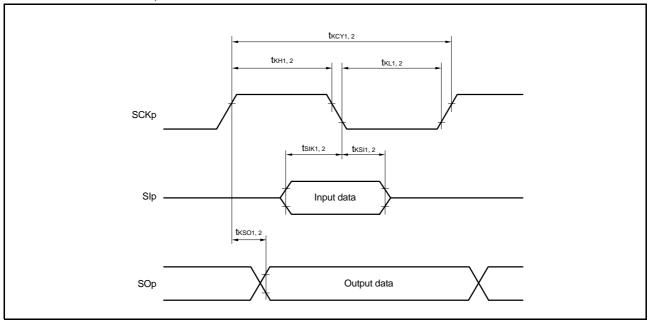
$$(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$$


(2/2)

				Н	IS	L	S	L	Р												
Item	Symbol		Conditions		eed Main) ode	(Low-Spe	eed Main) ode	`	wer Main) ode	Unit											
				Min.	Max.	Min.	Max.	Min.	Max.												
SIp setup time (to SCKp↑)Note 1	tSIK2	2.7 V ≤ EVDD0 ≤ 5.5 V 1.8 V ≤ EVDD0 ≤ 5.5 V 1.6 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns											
				1/fмск + 30		1/fмск + 30		1/fмск + 30		ns											
Cla hold time				1/fмск + 40		1/fмск + 40		1/fмск + 40		ns											
SIp hold time (from SCKp↑)Note 1	tKSI2	1.8 V ≤ E\	/DD0≤5.5 V	1/fмск + 31		1/fмск + 31		1/fмск + 31		ns											
		1.6 V ≤ EV	/DD0≤5.5 V	1/fмск + 250		1/fмск + 250		1/fмск + 250		ns											
Delay time from SCKp↓ to SOp output	tKSO2	C = 30 pF Note 3	2.7 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 44		2/fмcк + 110		2/fмск + 110	ns											
Note 2			l	ı										2.4 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
		-	1.8 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 110		2/fмск + 110		2/fмск + 110	ns											
			1.6 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns											


- **Note 1.** This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the SIp setup time becomes "to SCKp \downarrow " and that for the SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The setting for the delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. C is the load capacitance of the SOp output line.
- Note 4. Transfer rate in the SNOOZE mode is 1 Mbps at the maximum.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using the port input mode register g (PIMg) and the port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)
- Remark 2. fMCK: Serial array unit operation clock frequency

(To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number = 00 to 03, 10 to 13).)


Connection in the simplified SPI (CSI) communications with devices operating at same voltage levels

Timing of serial transfer in the simplified SPI (CSI) communications with devices operating at same voltage levels when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1

Timing of serial transfer in the simplified SPI (CSI) communications with devices operating at same voltage levels when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(5) In simplified I²C communications with devices operating at same voltage levels

(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(1/2)

Item	Symbol	Conditions	(High-Sp	HS leed Main) ode	(Low-Sp	LS eed Main) ode	LP (Low-Power Main) Mode		Unit	
			Min.	Max.	Min.	Max.	Min.	Max.		
SCLr clock frequency	fscL	$2.7 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω		1000 Note 1		1000 Note 1		400Note 1	kHz	
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ		400Note 1		400Note 1		400Note 1	kHz	
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ		300Note 1		300Note 1		300Note 1	kHz	
		1.6 V ≤ EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 kΩ		250Note 1		250Note 1		250Note 1	kHz	
Hold time when SCLr is low	tLOW	2.7 V \leq EVDD0 \leq 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	475		475		1150		ns	
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1150		1150		1150		ns	
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		1550		1550		ns	
		1.6 V ≤ EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	1850		1850		1850		ns	
Hold time when SCLr is high	tHIGH	$2.7 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	475		475		1150		ns	
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1150		1150		1150		ns	
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		1550		1550		ns	
		1.6 V \leq EVDD0 $<$ 1.8 V, Cb = 100 pF, Rb = 5 kΩ	1850		1850		1850		ns	

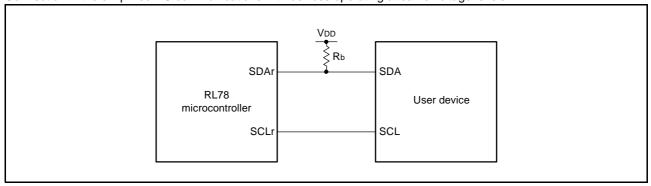
(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(5) In simplified I²C communications with devices operating at same voltage levels

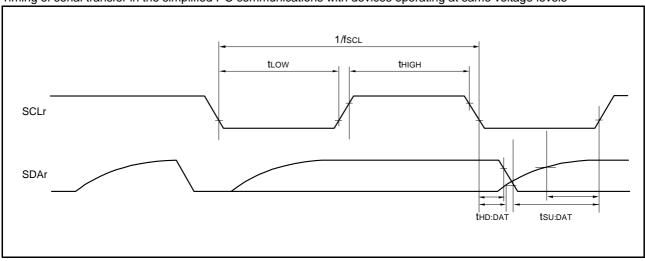
 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

(2/2)

Item	Symbol	Conditions	H: (High-Spe Mo	ed Main)	LS (Low-Spe	ed Main)	LP (Low-Power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Data setup time (reception)	tsu:dat	2.7 V ≤ EVDD0 ≤ 5.5 V, Cb = 50 pF, Rb = 2.7 kΩ	1/fMCK + 85 Note 2		1/fMCK + 85 Note 2		1/fMCK + 145 Note 2		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1/fMCK + 145 Note 2		1/fMCK + 145 Note 2		1/fMCK + 145 Note 2		ns
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1/fMCK + 230 Note 2		1/fMCK + 230 Note 2		1/fMCK + 230 Note 2		ns
		1.6 V ≤ EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	1/fMCK + 290 Note 2		1/fMCK + 290 Note 2		1/fMCK + 290 Note 2		ns
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	0	305	0	305	0	305	ns
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	0	355	0	355	0	355	ns
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	0	405	ns
		1.6 V ≤ EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	0	405	0	405	0	405	ns


Note 1. The listed times must be no greater than fMCK/4.

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (when 30- to 52-pin products)/EVDD tolerance (when 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(Remarks are listed on the next page.)

Note 2. Set fMCK so that it will not exceed the hold time when SCLr is low or high.

Connection in the simplified I²C communications with devices operating at same voltage levels

Timing of serial transfer in the simplified I²C communications with devices operating at same voltage levels

Remark 1. $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance

Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number <math>(g = 0, 1, 4, 5, 8, 14), h: POM number <math>(g = 0, 1, 4, 5, 7 to 9, 14)

Remark 3. fMCK: Serial array unit operation clock frequency

(To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number = 00 to 03, 10 to 13).)

(6) In UART communications with devices operating at different voltage levels (1.8 V, 2.5 V, 3 V)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

(1/2)

Item	Item Symbol		Conditions		HS beed Main) lode	(Low-Spe	S eed Main) ode	(Low-Pov Mo	Unit	
				Min.	Max.	Min.	Max.	Min.	Max.	
Transfer rate		Reception	4.0 V ≤ EVDD0 ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLKNote 4		5.3		4		0.33	Mbps
			2.7 V ≤ EVDD0 < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLKNote 4		5.3		4		0.33	Mbps
			1.8 V ≤ EVDD0 < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V		fMCK/6 Notes 1, 2, 3		fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLKNote 4		5.3		4		0.33	Mbps

- **Note 1.** Transfer rate in the SNOOZE mode is within the range from 4800 to 9600 bps.
- Note 2. Use this rate with EVDD0 ≥ Vb.
- **Note 3.** The following conditions are required for low voltage interface when EVDD0 < VDD.

 $2.4 \text{ V} \le \text{EVDD0} < 2.7 \text{ V}: 2.6 \text{ Mbps (max.)}$

1.8 V ≤ EVDD0 < 2.4 V: 1.3 Mbps (max.)

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (1.8 V \leq VDD \leq 5.5 V)

 $4 \text{ MHz} (1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$

LS (low-speed main) mode: 24 MHz (1.8 V \leq VDD \leq 5.5 V)

 $4 \text{ MHz} (1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$

LP (low-power main) mode: 2 MHz (1.6 V ≤ VDD ≤ 5.5 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (when 30- to 52-pin products)/EVDD tolerance (when 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency

(To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number = 00 to 03, 10 to 13).)

Remark 4. Communications by using UART2 with devices operating at different voltage levels are not possible when the setting of bit 1 (PIOR1) of the peripheral I/O redirection register (PIOR) is 1.

(2/2)

(6) In UART communications with devices operating at different voltage levels (1.8 V, 2.5 V, 3 V)

$$(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$$

Item	Symbol		Conditions	(High-Sp	HS eed Main) ode	(Low-Sp	S eed Main) ode	(Low-Po	P wer Main) ode	Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
Transfer rate		Transmission	4.0 V ≤ EVDD0 ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $Cb = 50 \text{ pF}, \\ Rb = 1.4 \text{ k}\Omega, \\ Vb = 2.7 \text{ V}$		2.8Note 2		2.8Note 2		2.8Note 2	Mbps
			2.7 V ≤ EVDD0 < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $Cb = 50 \ pF, \\ Rb = 2.7 \ k\Omega, \\ Vb = 2.3 \ V$		1.2Note 4		1.2Note 4		1.2Note 4	Mbps
			1.8 V ≤ EVDD0 < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $Cb = 50 \text{ pF}, \\ Rb = 5.5 \text{ k}\Omega, \\ Vb = 1.6 \text{ V}$		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V}$, $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

$$\begin{array}{l} \text{Maximum transfer rate} = \frac{1}{ \left\{ -C_b \times R_b \times \ln \left(1 - \frac{2.2}{V_b} \right) \right\} \times 3} \\ \\ \text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \left\{ -C_b \times R_b \times \ln \left(1 - \frac{2.2}{V_b} \right) \right\}}{\left(\frac{1}{\text{Transfer rate}} \right) \times \text{Number of transferred bits}} \\ \end{array}$$

Note 2. This rate is calculated as an example when the conditions described in the "Conditions" column are met. See **Note 1** above to calculate the maximum transfer rate under conditions of the customer.

* This value is the theoretical value of the relative difference between the transmission and reception sides.

(Notes and Caution continue in the next page.)

Note 3. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate.

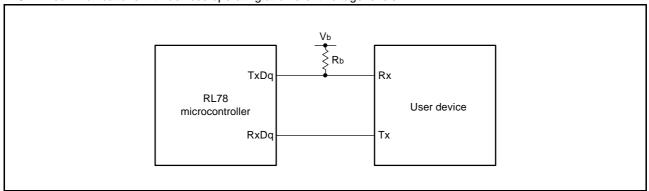
Expression for calculating the transfer rate when 2.7 V ≤ EVDD0 < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V

$$\label{eq:maximum transfer rate} \frac{1}{ \left\{ -C_b \times R_b \times \text{ln (1 - } \frac{2.0}{V_b} \) \right\} \times 3} \text{ [bps]}$$

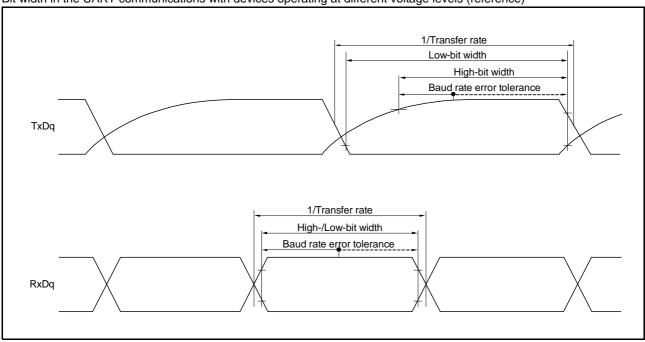
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-\text{Cb} \times \text{Rb} \times \text{In} (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **Note 4.** This rate is calculated as an example when the conditions described in the "Conditions" column are met. See **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- Note 5. Use this rate with EVDD0 ≥ Vb.
- Note 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

 Expression for calculating the transfer rate when 1.8 V ≤ EVDD0 < 3.3 V, 1.6 V ≤ Vb ≤ 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times In \ (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2}}{\left(\frac{1}{\text{Transfer rate}}\right) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **Note 7.** This rate is calculated as an example when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (when 30- to 52-pin products)/EVDD tolerance (when 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

In UART communications with devices operating at different voltage levels

Bit width in the UART communications with devices operating at different voltage levels (reference)

- Remark 1. $Rb[\Omega]$: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency

 (To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number = 00 to 03, 10 to 13).)
- Remark 4. Communications by using UART2 with devices operating at different voltage levels are not possible when the setting of bit 1 (PIOR1) of the peripheral I/O redirection register (PIOR) is 1.

(1/2)

(7) In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (2.5 V or 3 V) with the internal SCKp clock (the ratings below are only applicable to CSI00)

$$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$$

Item	Symbol	C	Conditions	HS (High-Spee	ed Main)	LS (Low-S Mai Mod	peed n)	LF (Low-Pow Mod	er Main)	Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tKCY1 ≥ 2/fCLK	$4.0 \text{ V} \le \text{EVDD0} \le 5.5$ V, $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$, Cb = 20 pF, Rb = 1.4 kΩ	200		200		2300		ns
			$ 2.7 \ V \le EVDD0 < 4.0 \\ V, 2.3 \ V \le Vb \le 2.7 \ V, \\ Cb = 20 \ pF, \\ Rb = 2.7 \ k\Omega $	300		300		2300		ns
SCKp high-level width	tKH1	4.0 V ≤ EVDD 2.7 V ≤ Vb ≤ 4 Cb = 20 pF, F	4.0 V,	tKCY1/2 - 50		tKCY1/2 - 50		tKCY1/2 - 50		ns
		2.7 V ≤ EVDD 2.3 V ≤ Vb ≤ 2 Cb = 20 pF, F	2.7 V,	tKCY1/2 - 120		tKCY1/2 - 120		tKCY1/2 - 120		ns
SCKp low-level width	tKL1	4.0 V ≤ EVDD 2.7 V ≤ Vb ≤ 4 Cb = 20 pF, F	4.0 V,	tKCY1/2 - 7		tKCY1/2 - 7		tKCY1/2 - 50		ns
		2.7 V ≤ EVDD 2.3 V ≤ Vb ≤ 2 Cb = 20 pF, F	2.7 V,	tKCY1/2 - 10		tKCY1/2 - 10		tKCY1/2 - 50		ns
SIp setup time (to SCKp↑)Note 1	tSIK1	4.0 V ≤ EVDD 2.7 V ≤ Vb ≤ 4 Cb = 20 pF, F	4.0 V,	58		58		479		ns
		2.7 V ≤ EVDD 2.3 V ≤ Vb ≤ 2 Cb = 20 pF, F	2.7 V,	121		121		479		ns
SIp hold time (from SCKp↑)Note 1	tKSI1	4.0 V ≤ EVDD 2.7 V ≤ Vb ≤ 4 Cb = 20 pF, F	4.0 V,	10		10		10		ns
		2.7 V ≤ EVDD 2.3 V ≤ Vb ≤ 2 Cb = 20 pF, F	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp outputNote 1	tKSO1	4.0 V ≤ EVDD 2.7 V ≤ Vb ≤ 4 Cb = 20 pF, F	4.0 V,		60		60		60	ns
		2.7 V ≤ EVDD 2.3 V ≤ Vb ≤ 2 Cb = 20 pF, F	2.7 V,		130		130		130	ns

(Notes, Caution, and Remarks are listed on the next page.)

(7) In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (2.5 V or 3 V) with the internal SCKp clock (the ratings below are only applicable to CSI00)

$$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$$

(2/2)

Item	Symbol	Conditions	(High-Sp	S eed Main) ode	(Low-Spe	S eed Main) ode	LP (Low-Power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SIp setup time (to SCKp↓)Note 2	tsik1	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 20 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$	23		23		110		ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 20 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	33		33		110		ns
SIp hold time (from SCKp↓)Note 2	tKSI1	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 20 pF, Rb = 1.4 kΩ	10		10		10		ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 20 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	10		10		10		ns
Delay time from SCKp↑ to SOp outputNote 2	tKSO1	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 20 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$		10		10		10	ns
		2.7 V \leq EVDD0 $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 20 pF, Rb = 2.7 k Ω		10		10		10	ns

- Note 1. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- Note 2. This setting applies when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (when 30- to 52-pin products)/EVDD tolerance (when 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. $Rb[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- $\textbf{Remark 2.} \ p: CSI \ number \ (p=00), \ m: \ Unit \ number \ (m=0), \ n: \ Channel \ number \ (n=0), \ g: \ PIM \ and \ POM \ numbers \ (g=1)$
- Remark 3. fMcK: Serial array unit operation clock frequency

 (To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number = 00).)
- Remark 4. The listed times are only valid when the peripheral I/O redirect function of CSI00 is not in use.

(8) In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the internal SCKp clock

$$(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$$

(1/3)

Item	Symbol		Conditions	HS (High-Spee Mod	ed Main)	LS (Low-S Maii Mod	peed n)	LF (Low-Pow Mod	er Main)	Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp cycle time	tKCY1	tKCY1 ≥ 4/fCLK	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, $Rb = 1.4 \text{ k}\Omega$	300		300		2300		ns
			$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ Cb = 30 pF, $Rb = 2.7 \text{ k}\Omega$	500		500		2300		ns
			$\begin{array}{c} 1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}^{\text{Note}}, \\ \text{Cb} = 30 \text{ pF}, \\ \text{Rb} = 5.5 \text{ k}\Omega \end{array}$	1150		1150		2300		ns
SCKp high-level width	tKH1	2.7 V ≤ Vb	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}Ω$			tKCY1/2 - 75		tKCY1/2 - 75		ns
		2.3 V ≤ Vb	$VDD0 < 4.0 \text{ V},$ $A \le 2.7 \text{ V},$ $A = 7.7 \text{ R}$ $A = 7.7 \text{ R}$	tKCY1/2 - 170		tKCY1/2 - 170		tKCY1/2 - 170		ns
		1.6 V ≤ Vb	/DD0 < 3.3 V, < 2.0 V Note , =, Rb = 5.5 kΩ	tKCY1/2 - 458		tKCY1/2 - 458		tKCY1/2 - 458		ns
SCKp low-level width	tKL1	2.7 V ≤ Vb	/DD0 ≤ 5.5 V, s≤ 4.0 V, F, Rb = 1.4 kΩ	tKCY1/2 - 12		tKCY1/2 - 12		tKCY1/2 - 50		ns
		2.3 V ≤ Vb	VDDO < 4.0 V, $0 \le 2.7 \text{ V},$ $0 \le 7.7 \text{ R},$ Rb = 2.7 kΩ	tKCY1/2 - 18		tKCY1/2 - 18		tKCY1/2 - 50		ns
		1.6 V ≤ Vb	$VDD0 < 3.3 \text{ V},$ $A \le 2.0 \text{ V}$ Note, $A = 5.5 \text{ k}$ Ω	tKCY1/2 - 50		tKCY1/2 - 50		tKCY1/2 - 50		ns

Note Use this setting with EVDD0 ≥ Vb.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (when 30- to 52-pin products)/EVDD tolerance (when 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

 $(\mbox{\bf Remarks}$ are listed two pages after the next page.)

(8) In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the internal SCKp clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

(2/3)

Item	Symbol	Conditions	(High-Sp	IS eed Main) ode	(Low-Spe	S eed Main) ode	(Low-Pov	P wer Main) ode	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SIp setup time (to SCKp↑)Note 1	tSIK1	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$	81		81		479		ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	177		177		479		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ VNote 2}, \\ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp↑)Note 1	tKSI1	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$	19		19		19		ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	19		19		19		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V} \text{Note 2}, \\ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↓ to SOp outputNote 1	tKSO1	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$		100		100		100	ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		195		195		195	ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ VNote 2}, \\ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega \end{array}$		483		483		483	ns

Note 1. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (when 30- to 52-pin products)/EVDD tolerance (when 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

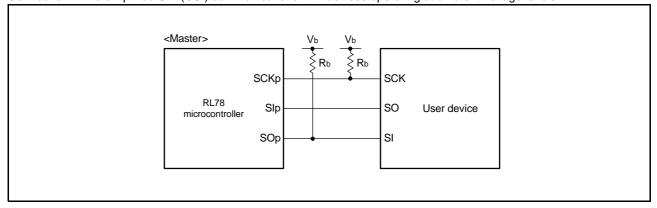
Note 2. Use this setting with EVDD0 ≥ Vb.

(8) In simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the internal SCKp clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

(3/3)

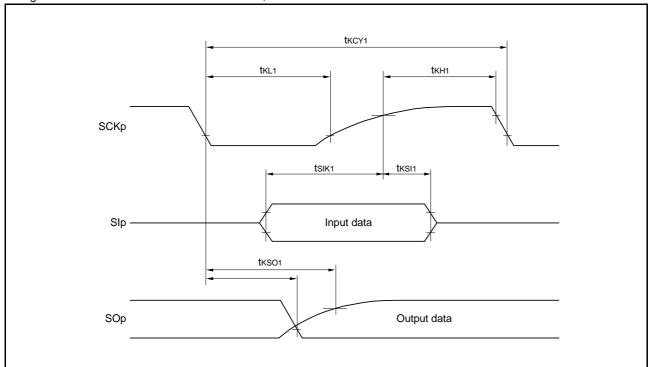
Item	Symbol	Conditions	(High-Spe	IS eed Main) ode	(Low-Spe	S eed Main) ode	(Low-Pov	.P wer Main) ode	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SIp setup time (to SCKp↓)Note 1	tSIK1	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$	44		44		110		ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 30 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	44		44		110		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ VNote 2}, \\ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega \end{array}$	110		110		110		ns
SIp hold time (from SCKp↓)Note 1	tKSI1	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, Rb = 1.4 kΩ	19		19		19		ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 30 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	19		19		19		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V} \\ \text{Cb} = 30 \text{ pF}, \text{ Rb} = 5.5 \text{ k} \\ \Omega \end{array}$	19		19		19		ns
Delay time from SCKp↑ to SOp outputNote 1	tKSO1	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 1.4 \text{ k}\Omega$		25		25		25	ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		25		25		25	ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V} \text{Note 2}, \\ \text{Cb} = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega \end{array}$		25		25		25	ns

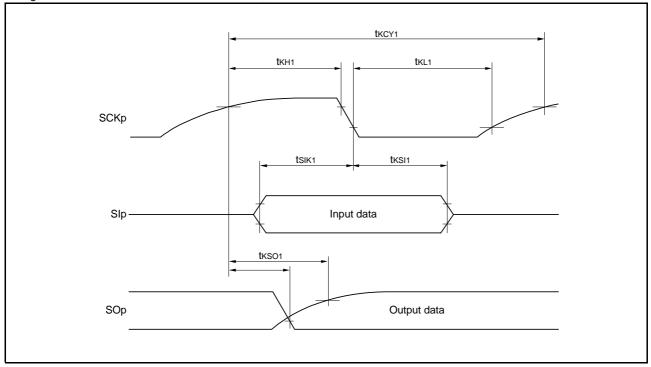

Note 1. This setting applies when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. Use this setting with $EVDD0 \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (when 30- to 52-pin products)/EVDD tolerance (when 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)


Connection in the simplified SPI (CSI) communications with devices operating at different voltage levels


- Remark 1. $Rb[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
- Remark 3. fMcK: Serial array unit operation clock frequency

 (To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number = 00).)
- **Remark 4.** Communications by using CSI01 of 48-, 52-, and 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

Timing of serial transfer in the simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1

Timing of serial transfer in the simplified SPI (CSI) communications in the master mode with devices operating at different voltage levels when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0

Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

Remark 2. Communications by using CSI01 of 48-, 52-, and 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

(9) In simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the external SCKp clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

(1/2)

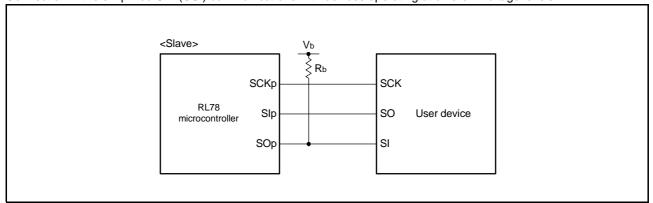
Item	Symbol	Con	ditions	HS (High-S _l Mair Mod	peed n)	LS (Low-Speed Main) Mode		LP (Low-Power Main) Mode		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
SCKp	tKCY2	4.0 V ≤ EVDD0 ≤ 5.5 V,	24 MHz < fMCK	14/fmck		_		_		ns
cycle time		2.7 V ≤ Vb ≤ 4.0 V	20 MHz < fMCK ≤ 24 MHz	12/fMCK		12/fмck		_		ns
Note 1			8 MHz < fMCK ≤ 20 MHz	10/fmck		10/fмck		_		ns
			4 MHz < fMCK ≤ 8 MHz	8/fмск		8/fмск		_		ns
			fMCK ≤ 4 MHz	6/fмск		6/fмск		10/fмck		ns
		2.7 V ≤ EVDD0 < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V,	24 MHz < fMCK	20/fмск		_		_		ns
			$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V},$	20 MHz < fMCK ≤ 24 MHz	16/fmck		16/fмск		_	
			16 MHz < fмcк ≤ 20 MHz	14/fMCK		14/fMCK		_		ns
			8 MHz < fMCK ≤ 16 MHz	12/fMCK		12/fMCK		_		ns
			4 MHz < fMCK ≤ 8 MHz	8/fMCK		8/fмск		_		ns
			fMCK ≤ 4 MHz	6/fMCK		6/fмск		10/fмck		ns
		1.8 V ≤ EVDD0 < 3.3 V,	24 MHz < fMCK	48/fMCK		_		_		ns
		1.6 V ≤ Vb ≤ 2.0 V Note 2	20 MHz < fMCK ≤ 24 MHz	36/fмск		36/fмск		_		ns
			16 MHz < fмcк ≤ 20 MHz	32/fMCK		32/fMCK		_		ns
			8 MHz < fMCK ≤ 16 MHz	26/fMCK		26/fмск		_		ns
			4 MHz < fMCK ≤ 8 MHz	16/fMCK		16/fмск		_		ns
			fMCK ≤ 4 MHz	10/fmck		10/fмск		10/fmck		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(9) In simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V) with the external SCKp clock

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

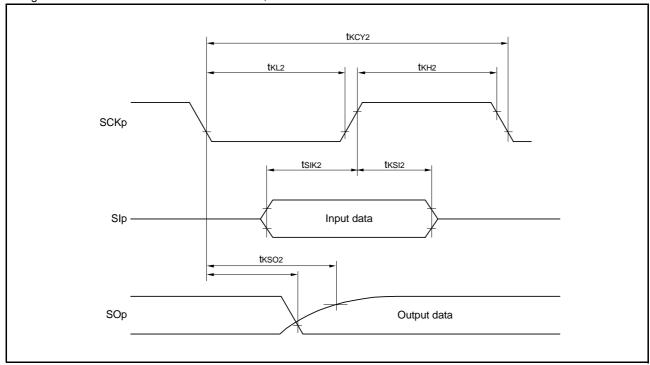
(2/2)

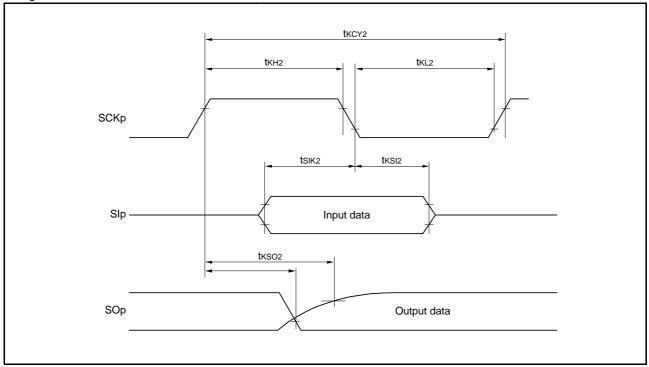

•						,			•
ltem	Symbol	Conditions	(High-Spe	IS eed Main) ode	LS (Low-Speed Main Mode		LP (Low-Power Main) Mode		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SCKp high-/low-level width	tKH2, tKL2	4.0 V ≤ EVDD0 ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V	tKCY2/2 - 12		tKCY2/2 - 12		tKCY2/2 - 50		ns
		2.7 V ≤ EVDD0 < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V	tKCY2/2 - 18		tKCY2/2 - 18		tKCY2/2 - 50		ns
		1.8 V \leq EVDD0 $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note 2}	tKCY2/2 - 50		tKCY2/2 - 50		tKCY2/2 - 50		ns
SIp setup time (to SCKp↑)Note 3	tSIK2	4.0 V ≤ EVDD0 ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V	1/fмск + 20		1/fмск + 20		1/fMCK + 30		ns
		2.7 V ≤ EVDD0 < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V	1/fмск + 20		1/fмск + 20		1/fмск + 30		ns
		1.8 $V \le EVDD0 < 3.3 V$, 1.6 $V \le V_b \le 2.0 V$ Note 2	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑)Note 3	tKSI2		1/fмск + 31		1/fмск + 31		1/fMCK + 31		ns
Delay time from SCKp↓ to SOp outputNote 4	tKSO2	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 30 pF, Rb = 1.4 kΩ		2/fмск + 120		2/fмск + 120		2/fмск + 573	ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		2/fмск + 214		2/fмск + 214		2/fмск + 573	ns
		1.8 V ≤ EVDD0 < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 VNote 2, C _b = 30 pF, R _b = 5.5 kΩ		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

- Note 1. Transfer rate in the SNOOZE mode: 1 Mbps (max.)
- Note 2. Use this setting with EVDD0 ≥ Vb.
- Note 3. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp]" and SIp hold time becomes "from SCKp]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. This setting applies when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)


Connection in the simplified SPI (CSI) communications with devices operating at different voltage levels


- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency

 (To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number = 00, 01, 02, 10, 12 and 13).)
- **Remark 4.** Communications by using CSI01 of 48-, 52-, and 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

Timing of serial transfer in the simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels when DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1

Timing of serial transfer in the simplified SPI (CSI) communications in the slave mode with devices operating at different voltage levels when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0

Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

Remark 2. Communications by using CSI01 of 48-, 52-, and 64-pin products, and CSI11 and CSI21 with devices operating at different voltage levels are not possible. Use other CSI channels to handle such communications.

(10) Simplified I²C communications with devices operating at different voltage levels (1.8 V, 2.5 V, or 3 V)

(TA = -40 to +105°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(1/2)

Item	Symbol	Conditions	(High-Sp	IS eed Main) ode	(Low-Spe	S eed Main) ode	(Low-Po	.P wer Main) ode	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
SCLr clock frequency	fSCL	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		1000 Note 1		1000 Note 1		300 Note 1	kHz
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$		1000 Note 1		1000 Note 1		300 Note 1	kHz
		$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 100 pF, Rb = 2.8 kΩ		400 Note 1		400 Note 1		300 Note 1	kHz
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 100 \text{ pF}, Rb = 2.7 \text{ k}\Omega$		400 Note 1		400 Note 1		300 Note 1	kHz
		1.8 V ≤ EVDD0 < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 VNote 2, Cb = 100 pF, Rb = 5.5 kΩ		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr is low	tLOW	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $\text{Cb} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	475		475		1550		ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	475		475		1550		ns
		$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 100 pF, Rb = 2.8 kΩ	1150		1550		1550		ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 100 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	1150		1550		1550		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V} \\ \text{Note 2}, \\ \text{Cb} = 100 \text{ pF}, \text{ Rb} = 5.5 \text{ k} \\ \Omega \end{array}$	1550		1550		1550		ns
Hold time when SCLr is high	tHIGH	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 50 pF, Rb = 2.7 kΩ	245		245		610		ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	200		200		610		ns
		$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 100 pF, Rb = 2.8 kΩ	675		675		610		ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	600		600		610		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ VNote 2}, \\ \text{Cb} = 100 \text{ pF, Rb} = 5.5 \text{ k}\Omega \end{array}$	610		610		610		ns

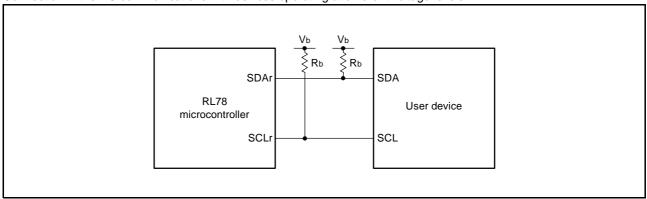
(10) Simplified I²C communications with devices operating at different voltage levels (1.8 V, 2.5 V, and 3 V)

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \leq \text{EVDD0} = \text{EVDD1} \leq \text{VDD} \leq 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

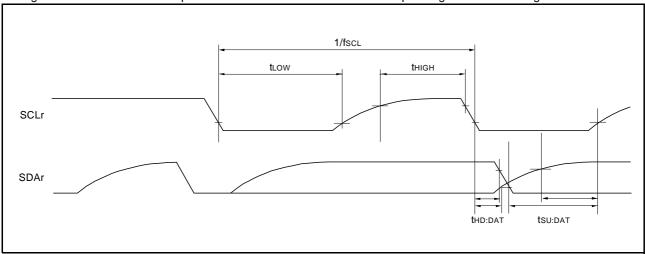
(2/2)

Item	Symbol	Conditions	HS (High-Spee Mod	ed Main)	LS (Low-Spee Mod	ed Main)	LF (Low-Pow Mod	er Main)	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Data setup time (reception)	tsu:dat	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	1/fMCK + 135 Note 3		1/fMCK + 135 Note 3		1/fMCK + 190 Note 3		ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $Cb = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	1/fMCK + 135 Note 3		1/fMCK + 135 Note 3		1/fMCK + 190 Note 3		ns
		$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 100 pF, Rb = 2.8 kΩ	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
		2.7 V \leq EVDD0 $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 100 pF, Rb = 2.7 k Ω	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V} \text{Note 2}, \\ \text{Cb} = 100 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega \end{array}$	1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		1/fMCK + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	ns
		2.7 V \leq EVDD0 $<$ 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 50 pF, Rb = 2.7 k Ω	0	305	0	305	0	305	ns
		$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ Cb = 100 pF, Rb = 2.8 kΩ	0	355	0	355	0	355	ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$ $\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$	0	355	0	355	0	355	ns
		1.8 V ≤ EVDD0 < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 VNote 2, Cb = 100 pF, Rb = 5.5 kΩ	0	405	0	405	0	405	ns

Note 1. The listed times must be no greater than fMCK/4.


Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)


Note 2. Use this setting with $EVDD0 \ge Vb$.

Note 3. Set fMCK so that it will not exceed the hold time when SCLr is low or high.

Connection in the I²C communications with devices operating at different voltage levels

Timing of serial transfer in the simplified I²C communications with devices operating at different voltage levels

Remark 1. $Rb[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

 $\textbf{Remark 2.} \ \, \text{r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)}$

Remark 3. fMCK: Serial array unit operation clock frequency

(To set this operating clock, use the CKSmn bit in the serial mode register mn (SMRmn) (m: Unit number, n: Channel number = 00, 01, 02, 10, 12 and 13).)

<R>

2.5.2 Serial interface UARTA

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transfer rate			200	0	153600	bps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark g: PIM number (g = 3, 4, 7, 8), h: POM number (h = 3, 4, 7, 8, 12)

2.5.3 Serial interface IICA

(1) I2C standard mode

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fSCL	Standard mode: fcLk ≥ 1 MHz	0		100	kHz
Setup time of restart condition	tsu:sta		4.7			μs
Hold timeNote 1	tHD:STA		4.0			μs
Hold time when SCLA0 is low	tLOW		4.7			μs
Hold time when SCLA0 is high	tHIGH		4.0			μs
Data setup time (reception)	tsu:dat		250			ns
Data hold time (transmission)Note 2	thd:dat		0		3.45	μs
Setup time of stop condition	tsu:sto		4.0			μs
Bus-free time	tBUF		4.7			μs

- Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.
- **Note 2.** The maximum value of thd:DAT applies to normal transfer. The clock stretching will be inserted on reception of an acknowledgment (ACK) signal.

Caution The listed frequency and times apply even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1.

In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows. Cb = 400 pF, Rb = $2.7 \text{ k}\Omega$

(2) I2C fast mode

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fSCL	Fast mode: fcLK ≥ 3.5 MHz 1.8 V ≤ EVDD0 ≤ 5.5 V	0		400	kHz
Setup time of restart condition	tsu:sta	1.8 V ≤ EVDD0 ≤ 5.5 V	0.6			μs
Hold timeNote 1	thd:STA	1.8 V ≤ EVDD0 ≤ 5.5 V	0.6			μs
Hold time when SCLA0 is low	tLOW	1.8 V ≤ EVDD0 ≤ 5.5 V	1.3			μs
Hold time when SCLA0 is high	tHIGH	1.8 V ≤ EVDD0 ≤ 5.5 V	0.6			μs
Data setup time (reception)	tsu:dat	1.8 V ≤ EVDD0 ≤ 5.5 V	100			ns
Data hold time (transmission)Note 2	tHD:DAT	1.8 V ≤ EVDD0 ≤ 5.5 V	0		0.9	μs
Setup time of stop condition	tsu:sto	1.8 V ≤ EVDD0 ≤ 5.5 V	0.6			μs
Bus-free time	tBUF	1.8 V ≤ EVDD0 ≤ 5.5 V	1.3			μs

- Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.
- **Note 2.** The maximum value of thd:DAT applies to normal transfer. The clock stretching will be inserted on reception of an acknowledgment (ACK) signal.

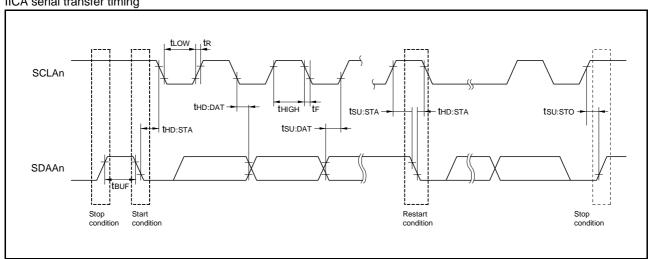
Caution The values in the above table apply even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows. Cb = 320 pF, Rb = 1.1 k Ω

(3) I2C fast mode plus

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCLA0 clock frequency	fscL	Fast mode plus: fcLk ≥ 10 MHz 2.7 V ≤ EVDD0 ≤ 5.5 V	0		1000	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ EVDD0 ≤ 5.5 V	0.26			μs
Hold timeNote 1	thd:STA	2.7 V ≤ EVDD0 ≤ 5.5 V	0.26			μs
Hold time when SCLA0 is low	tLOW	2.7 V ≤ EVDD0 ≤ 5.5 V	0.5			μs
Hold time when SCLA0 is high	tHIGH	2.7 V ≤ EVDD0 ≤ 5.5 V	0.26			μs
Data setup time (reception)	tsu:dat	2.7 V ≤ EVDD0 ≤ 5.5 V	50			ns
Data hold time (transmission)Note 2	thd:dat	2.7 V ≤ EVDD0 ≤ 5.5 V	0		0.45	μs
Setup time of stop condition	tsu:sto	2.7 V ≤ EVDD0 ≤ 5.5 V	0.26			μs
Bus-free time	tBUF	2.7 V ≤ EVDD0 ≤ 5.5 V	0.5			μs


Note 1. The first clock pulse is generated after this period when the start or restart condition is detected.

Note 2. The maximum value of thD:DAT applies to normal transfer. The clock stretching will be inserted on reception of an acknowledgment (ACK) signal.

Caution The values in the above table apply even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. In such cases, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of communication line capacitance (Cb) and communication line pull-up resistor (Rb) are as follows. $Cb = 120 pF, Rb = 1.1 k\Omega$

IICA serial transfer timing

Remark n = 0, 1

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

<R> (1) Normal modes 1 and 2

(TA = -40 to +105°C, 2.4 V ≤ AVREFP ≤ VDD ≤ 5.5 V, VSS = 0 V, reference voltage (+) = AVREFP (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM (ADREFM = 1), target pins: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES				12	bit
Conversion clock	fAD		1		32	MHz
Overall errorNotes 1, 3, 4, 5, 7	AINL	4.5 V ≤ AVREFP = VDD ≤ 5.5 V		±2.4	±4.5	LSB
		2.7 V ≤ AVREFP = VDD ≤ 5.5 V		±2.9	±5.7	LSB
		2.4 V ≤ AVREFP = VDD ≤ 5.5 V		±3.0	±5.8	LSB
Conversion timeNotes 6, 7	tCONV	4.5 V ≤ AVREFP = VDD ≤ 5.5 V	2.0			μs
		2.7 V ≤ AVREFP = VDD ≤ 5.5 V	2.0			μs
		2.4 V ≤ AVREFP = VDD ≤ 5.5 V	2.0			μs
Zero-scale errorNotes 1, 2, 3, 4, 5, 7	Ezs	4.5 V ≤ AVREFP = VDD ≤ 5.5 V		±0.01%	±0.08%	%FSR
		2.7 V ≤ AVREFP = VDD ≤ 5.5 V		±0.01%	±0.09%	%FSR
		2.4 V ≤ AVREFP = VDD ≤ 5.5 V		±0.03%	±0.13%	%FSR
Full-scale errorNotes 1, 2, 3, 4, 5, 7	EFS	4.5 V ≤ AVREFP = VDD ≤ 5.5 V		±0.03%	±0.09%	%FSR
		2.7 V ≤ AVREFP = VDD ≤ 5.5 V		±0.05%	±0.13%	%FSR
		2.4 V ≤ AVREFP = VDD ≤ 5.5 V		±0.05%	±0.13%	%FSR
Analog input voltage	VAIN		0		AVREFP	V

- Note 1. This value does not include the quantization error (±1/2 LSB).
- **Note 2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. When pins ANI16 to ANI31 are selected as the target pins for conversion, the maximum values are as follows.

 Overall error: Add ±3 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.04%FSR to the maximum value.

- Note 4. We do not inspect the characteristics of the A/D converter before shipment. The listed values are only results of evaluation.
- Note 5. When AVREFP < VDD, the maximum values are as follows.

Overall error/zero-scale error/full-scale error: Add (± 0.75 LSB x (VDD voltage (V) - AVREFP voltage (V)) to the maximum value.

Integral linearity error: Add (± 0.2 LSB \times (VDD voltage (V) - AVREFP voltage (V)) to the maximum value.

- Note 6. When the internal reference voltage or the temperature sensor output voltage is selected as the target for conversion, the sampling time must be at least 5 µs. Accordingly, use standard mode 2 with the longer sampling time.
- **Note 7.** The listed values apply when the conversion resolution is set to 12 bits.

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, VSS = 0 V, reference voltage (+) = AVREFP (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM (ADREFM = 1), target pins: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage)

Item	Symbol	Conditions		Min.	Тур.	Max.	Unit
Resolution	RES			8		12	Bit
Conversion clock	fAD			1		32	MHz
Overall errorNotes 1, 3, 4, 5	AINL	12-bit resolution	4.5 V ≤ AVREFP = VDD ≤ 5.5 V			±7.5	LSB
			2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±9.0	LSB
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±9.0	LSB
Conversion timeNote 6	tCONV	12-bit resolution	4.5 V ≤ AVREFP = VDD ≤ 5.5 V	2.0			μs
			2.7 V ≤ AVREFP = VDD ≤ 5.5 V	2.0			μs
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V	2.0			μs
Zero-scale errorNotes 1, 2, 3, 4, 5	Ezs	12-bit resolution	4.5 V ≤ AVREFP = VDD ≤ 5.5 V			±0.17	%FSR
			2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
Full-scale errorNotes 1, 2, 3, 4, 5	EFS	12-bit resolution	4.5 V ≤ AVREFP = VDD ≤ 5.5 V			±0.17	%FSR
			2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
Integral linearity errorNotes 1, 4, 5	ILE	12-bit resolution	4.5 V ≤ AVREFP = VDD ≤ 5.5 V			±3.0	LSB
			2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±3.0	LSB
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±3.0	LSB
Differential linearity errorNote 1	DLE	12-bit resolution	4.5 V ≤ AVREFP = VDD ≤ 5.5 V		±1.0		LSB
			2.7 V ≤ AVREFP = VDD ≤ 5.5 V		±1.0		LSB
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V		±1.0		LSB
Analog input voltage	VAIN			0		AVREFP	V

- Note 1. This value does not include the quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. When pins ANI16 to ANI31 are selected as the target pins for conversion, the maximum values are as follows.

Overall error: Add ±3 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.04%FSR to the maximum value.

Note 4. When reference voltage (+) = VDD and reference voltage (-) = Vss, the maximum values are as follows.

Overall error: Add ±10 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.25%FSR to the maximum value.

Integral linearity error: Add ±4 LSB to the maximum value.

Note 5. When AVREFP < VDD, the maximum values are as follows.

Overall error/zero-scale error/full-scale error: Add (± 0.75 LSB \times (VDD voltage (V) - AVREFP voltage (V)) to the maximum value.

Integral linearity error: Add (±0.2 LSB x (VDD voltage (V) - AVREFP voltage (V)) to the maximum value.

Note 6. When the internal reference voltage or the temperature sensor output voltage is selected as the target for conversion, the sampling time must be at least 5 µs. Accordingly, use standard mode 2 with the longer sampling time.

<R> (2) Low-voltage modes 1 and 2

(TA = -40 to +105°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, VSS = 0 V, reference voltage (+) = AVREFP (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM (ADREFM = 1), target pins ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage)

Item	Symbol	Conditions		Min.	Тур.	Max.	Unit
Resolution	RES			8		12	Bit
Conversion clock	fAD			1		24	MHz
Overall errorNotes 1, 3, 4, 5	AINL	12-bit resolution	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±9	LSB
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±9	LSB
			1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±11.5	LSB
			1.6 V ≤ AVREFP = VDD ≤ 5.5 V			±12.0	LSB
Conversion timeNote 6	tCONV	12-bit resolution	2.7 V ≤ AVREFP = VDD ≤ 5.5 V	3.33			μs
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V	5.0			μs
			1.8 V ≤ AVREFP = VDD ≤ 5.5 V	10.0			μs
			1.6 V ≤ AVREFP = VDD ≤ 5.5 V	20.0			μs
Zero-scale errorNotes 1, 2, 3, 4, 5	Ezs	12-bit resolution	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
			1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±0.27	%FSR
			1.6 V ≤ AVREFP = VDD ≤ 5.5 V			±0.28	%FSR
Full-scale errorNotes 1, 2, 3, 4, 5	EFS	12-bit resolution	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±0.21	%FSR
			1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±0.27	%FSR
			1.6 V ≤ AVREFP = VDD ≤ 5.5 V			±0.28	%FSR
Integral linearity errorNotes 1, 4, 5	ILE	12-bit resolution	2.7 V ≤ AVREFP = VDD ≤ 5.5 V			±4.0	LSB
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V			±4.0	LSB
			1.8 V ≤ AVREFP = VDD ≤ 5.5 V			±4.5	LSB
			1.6 V ≤ AVREFP = VDD ≤ 5.5 V			±4.5	LSB
Differential linearity errorNote 1	DLE	12-bit resolution	2.7 V ≤ AVREFP = VDD ≤ 5.5 V		±1.5		LSB
			2.4 V ≤ AVREFP = VDD ≤ 5.5 V		±1.5		LSB
			1.8 V ≤ AVREFP = VDD ≤ 5.5 V		±2.0		LSB
			1.6 V ≤ AVREFP = VDD ≤ 5.5 V		±2.0		LSB
Analog input voltage	VAIN			0		AVREFP	V

(Notes continues in the next page.)

- **Note 1.** This value does not include the quantization error $(\pm 1/2 \text{ LSB})$.
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. When pins ANI16 to ANI31 are selected as the target pins for conversion, the maximum values are as follows.

Overall error: Add ±3 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.04%FSR to the maximum value.

Note 4. When reference voltage (+) = VDD and reference voltage (-) = VSS, the maximum values are as follows.

Overall error: Add ±10 LSB to the maximum value.

Zero-scale/full-scale error: Add ±0.25%FSR to the maximum value.

Integral linearity error: Add ±4 LSB to the maximum value.

Note 5. When AVREFP < VDD, the maximum values are as follows.

Overall error/zero-scale error/full-scale error: Add (±0.75 LSB x (VDD voltage (V) - AVREFP voltage (V)) to the maximum value.

Integral linearity error: Add (±0.2 LSB x (VDD voltage (V) - AVREFP voltage (V)) to the maximum value.

Note 6. When the internal reference voltage or the temperature sensor output voltage is selected as the target for conversion, the sampling time must be at least 5 µs. Accordingly, use standard mode 2 with the longer sampling time, and use the conversion clock (fAD) of no more than 16 MHz.

<R>

(3) When the internal reference voltage is selected as reference voltage (+)

(TA = -40 to +105°C, 1.8 V \leq VDD \leq 5.5 V, VSS = 0 V, low-voltage modes 1 and 2, reference voltage (+) = internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM (ADREFM = 1)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	RES			8		Bit
Conversion clock	fAD	1.6 V ≤ VDD ≤ 5.5 V	1		2	MHz
Zero-scale errorNotes 1, 2, 4	Ezs	1.6 V ≤ VDD ≤ 5.5 V			±0.6	%FSR
Integral linearity errorNotes 1, 4	ILE	1.6 V ≤ VDD ≤ 5.5 V			±2.0	LSB
Differential linearity errorNote 1	DLE	1.6 V ≤ VDD ≤ 5.5 V		±1.0		LSB
Analog input voltage	VAIN		0		VBGR Note 3	V

- Note 1. This value does not include the quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- Note 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
- Note 4. When reference voltage (-) is selected as Vss, the maximum values are as follows.

Zero-scale error: Add ±0.35%FSR to the maximum value.

Integral linearity error: Add ±0.5 LSB to the maximum value.

2.6.2 Temperature sensor/internal reference voltage characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.42	1.48	1.54	V
Temperature coefficient	FVTMPS	Temperature dependency of the temperature sensor voltage		-3.3		mV/°C
Operation stabilization wait time	tAMP		5			μs

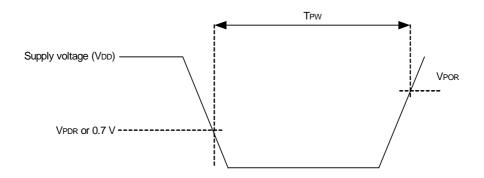
2.6.3 D/A converter characteristics

(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Item	Symbol	C	onditions	Min.	Тур.	Max.	Unit
Resolution	RES					8	Bit
Overall error	AINL	Rload = 8 MΩ	1.8 V ≤ VDD ≤ 5.5 V			± 2.5	LSB
		Rload = 4 MΩ	1.8 V ≤ VDD ≤ 5.5 V			± 2.5	LSB
Settling time	tset	Cload = 20 pF	2.7 V ≤ VDD ≤ 5.5 V			3	μs
			1.6 V ≤ VDD ≤ 5.5 V			6	μs

<R> 2.6.4 Comparator characteristics

(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


Item	Symbol	Conditio	ns	Min.	Тур.	Max.	Unit
Input voltage range	IVREF	Input to the IVREF0 and IVR C0LVL = 0, C1LVL = 0	EF1 pins	0		VDD - 1.4 and EVDD0	V
		Input to the IVREF0 and IVR C0LVL = 1, C1LVL = 1	EF1 pins	1.4		EVDD0	V
	IVCMP	Input to the IVCMP0 and IVC	MP1 pins	-0.3		EVDD0 + 0.3	V
Output delay	td	VDD = 3.0 V,	High-speed mode			1.5	μs
		Input slew rate > 1 V/μs	Low-speed mode		3.0		μs
Offset voltage	_	High-speed mode	_			50	mV
		Low-speed mode				40	mV
Operation stabilization wait time	tCMP			30			μs
Internal reference voltage	VBGR2			1.4		1.6	V

2.6.5 POR circuit characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, Vss = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection voltage	VPOR, VPDR		1.43	1.50	1.57	V
Minimum pulse widthNote	Tpw		300			μs

Note This width is the minimum time required for a POR reset when VDD falls below VPDR. This width is also the minimum time required for a POR reset from when VDD falls below 0.7 V to when VDD exceeds VPOR in the STOP mode or while the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.6 LVD circuit characteristics

(1) LVD0 Detection Voltage in the Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

	Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection	Supply voltage level	VLVD00	The power supply voltage is rising.	3.84	3.96	4.08	V
voltage			The power supply voltage is falling.	3.76	3.88	4.00	V
		VLVD01	The power supply voltage is rising.	2.88	2.97	3.06	V
			The power supply voltage is falling.	2.82	2.91	3.00	V
		VLVD02	The power supply voltage is rising.	2.59	2.67	2.75	V
			The power supply voltage is falling.	2.54	2.62	2.70	V
		VLVD03	The power supply voltage is rising.	2.31	2.38	2.45	V
			The power supply voltage is falling.	2.26	2.33	2.40	V
		VLVD04	The power supply voltage is rising.	1.84	1.90	1.95	V
			The power supply voltage is falling.	1.80	1.86	1.91	V
		VLVD05	The power supply voltage is rising.	1.64	1.69	1.74	V
			The power supply voltage is falling.	1.60	1.65	1.70	V
Minimum puls	Minimum pulse width			500			μs
Detection dela	y time					500	μs

<R>

(2) LVD1 Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

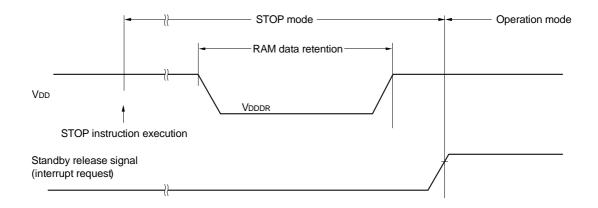
	Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Detection	Supply voltage level	VLVD10	The power supply voltage is rising.	4.08	4.16	4.24	V
voltage			The power supply voltage is falling.	4.00	4.08	4.16	V
		VLVD11	The power supply voltage is rising.	3.88	3.96	4.04	V
			The power supply voltage is falling.	3.80	3.88	3.96	V
		VLVD12	The power supply voltage is rising.	3.68	3.75	3.82	V
			The power supply voltage is falling.	3.60	3.67	3.74	V
		VLVD13	The power supply voltage is rising.	3.48	3.55	3.62	V
			The power supply voltage is falling.	3.40	3.49	3.54	V
		VLVD14	The power supply voltage is rising.	3.28	3.35	3.42	V
			The power supply voltage is falling.	3.20	3.27	3.34	V
		VLVD15	The power supply voltage is rising.	3.07	3.13	3.19	V
			The power supply voltage is falling.	3.00	3.06	3.12	V
		VLVD16	The power supply voltage is rising.	2.91	2.97	3.03	V
			The power supply voltage is falling.	2.85	2.91	2.97	V
		VLVD17	The power supply voltage is rising.	2.76	2.82	2.87	V
			The power supply voltage is falling.	2.70	2.76	2.81	V
		VLVD18	The power supply voltage is rising.	2.61	2.66	2.71	V
			The power supply voltage is falling.	2.55	2.60	2.65	V
		VLVD19	The power supply voltage is rising.	2.45	2.50	2.55	V
			The power supply voltage is falling.	2.40	2.45	2.50	V
		VLVD110	The power supply voltage is rising.	2.35	2.40	2.45	V
			The power supply voltage is falling.	2.30	2.35	2.40	V
		VLVD111	The power supply voltage is rising.	2.25	2.30	2.34	V
			The power supply voltage is falling.	2.20	2.25	2.29	V
		VLVD112	The power supply voltage is rising.	2.15	2.20	2.24	V
			The power supply voltage is falling.	2.10	2.15	2.19	V
		VLVD113	The power supply voltage is rising.	2.05	2.09	2.13	V
			The power supply voltage is falling.	2.00	2.04	2.08	V
		VLVD114	The power supply voltage is rising.	1.94	1.98	2.02	V
			The power supply voltage is falling.	1.90	1.94	1.98	V
		VLVD115	The power supply voltage is rising.	1.84	1.88	1.91	V
		Note	The power supply voltage is falling.	1.80	1.84	1.87	V
		VLVD116	The power supply voltage is rising.	1.74	1.78	1.81	V
		Note	The power supply voltage is falling.	1.70	1.74	1.77	V
		VLVD117	The power supply voltage is rising.	1.64	1.67	1.70	V
		Note	The power supply voltage is falling.	1.60	1.63	1.66	V
Minimum pul	se width	tLW		500			μs
Detection de						500	μs

Note This setting can only be used when LVD0 is disabled.

2.6.7 Power supply voltage rising slope characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD0 circuit or an external reset until VDD reaches the operating voltage range shown in AC characteristics.

2.7 RAM Data Retention Characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, VSS = 0\text{V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Data retention supply voltage	VDDDR		1.43Note		5.5	V

Note This voltage depends on the POR detection voltage. When the voltage drops, the data in RAM are retained until a POR is applied, but are not retained following a POR.

2.8 Flash Memory Programming Characteristics

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
CPU/peripheral hardware clock frequency	fclk		1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

- Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

 The retaining years are until next rewrite after the rewrite.
- **Note 2.** The listed numbers of times apply when using flash memory programmer and Renesas Electronics self programming library.
- **Note 3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

(1) Code flash memory

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Item		Symbol	fc	CLK = 1 N	ЛHz	fclk =	2 MHz,	3 MHz	4 MHz	≤ fCLK <	< 8 MHz	8 MHz	≤ fclk <	32 MHz	fCL	κ = 32 ľ	ИНz	Unit
item		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	4 bytes	tP4	-	74.7	656.5	_	51.0	464.6	_	41.7	384.8	_	37.1	346.2	_	34.2	321.9	μs
Erasure time	2 Kbytes	tE2K	_	10.4	312.2	_	7.7	258.5	_	6.4	231.8	_	5.8	218.4	_	5.6	214.4	ms
Blank checking	4 bytes	tBC4	_	_	38.4	_	_	19.2	_	_	13.1	_	_	10.2	_	_	8.3	μs
time 2	2 Kbytes	tBC2K	_	_	2618.9	_	_	1309.5	_	_	658.3	_	_	332.8	_	_	234.1	μs
Time taken to fo the erasure	rcibly stop	tsed	-	_	18.0	_	_	14.0	_	_	12.0	_	_	11.0	_	_	10.3	μs
Security setting	time	tawssas	_	18.2	526.2	_	14.4	469.2	_	12.5	441.1	_	11.6	427.1	_	11.3	422.6	ms
Time until progratures following cancellation of tinstruction		_	20	_	_	20	_	_	20	_	_	20	_		20	_	_	μs

Caution The listed values do not include the time until the operations of the flash memory start following execution of an instruction by software.

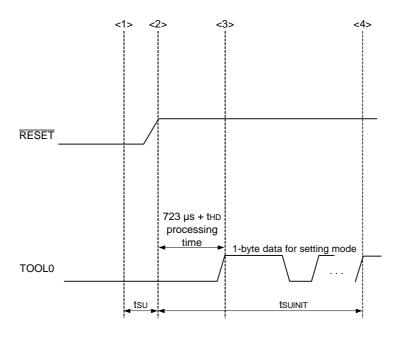
(2) Data flash memory

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, \ 1.6 \ \text{V} \leq \text{VDD} \leq 5.5 \ \text{V}, \ \text{Vss} = 0 \ \text{V})$

Item		Cumahad	fc	CLK = 1 N	ЛHz	fclk =	2 MHz,	3 MHz	4 MHz	≤ fCLK <	< 8 MHz	8 MHz	≤ fCLK <	32 MHz	fCL	K = 32 ľ	MHz	Unit
item		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	1 byte	tP4	_	74.7	656.5	_	51.0	464.6	_	41.7	384.8	_	37.1	346.2	_	34.2	321.9	μs
Erasure time	256 bytes	tE2K	_	7.8	259.2	_	6.4	232.0	_	5.8	218.5	_	5.5	211.8	_	5.4	209.7	ms
Blank checking	1 byte	tBC4	_	_	38.4	_	_	19.2	_	_	13.1	_	_	10.2	_	_	8.3	μs
	256 bytes	tBC2K	_	_	1326.1	_	_	663.1	_	_	335.1	_	_	171.2	_	_	121.0	μs
Time taken to fo the erasure	rcibly stop	tSED	_	_	18.0	_	_	14.0	_	_	12.0	_	_	11.0	_	_	10.3	μs
Time until progra starts following cancellation of to instruction		_	20	_	_	20	_	_	20	_	_	20	_	_	20	_	_	μs
Time until readir following setting to 1		_	0.25		_	0.25			0.25	ı	_	0.25		_	0.25	_	_	μs

Caution The listed values do not include the time until the operations of the flash memory start following execution of an instruction by software.

2.9 Dedicated Flash Memory Programmer Communication (UART)


 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

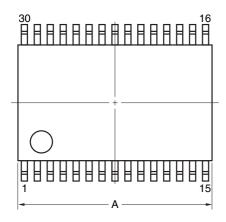
Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μs
Time to hold the TOOL0 pin at the low level after the external reset is released (the processing time of the firmware to control the flash memory is not included)	tHD	POR and LVD reset must be released before the external reset is released.	1			ms

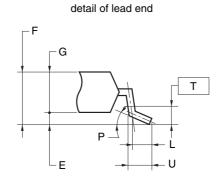
- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released. Note that the POR and LVD reset must be released before the external reset is released.
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

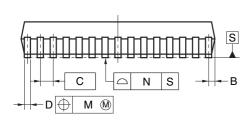
Remark tsuinit. The time during which the communications for the initial setting must be completed within 100 ms after the external reset is released.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

the: Time to hold the TOOL0 pin at the low level after the external reset is released. It does not include the processing time of the firmware to control the flash memory.

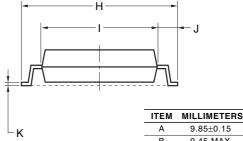



3. Package Drawings


3.1 30-Pin Products

R7F100GAF3CSP, R7F100GAG3CSP, R7F100GAH3CSP, R7F100GAJ3CSP R7F100GAF2DSP, R7F100GAG2DSP, R7F100GAH2DSP, R7F100GAJ2DSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

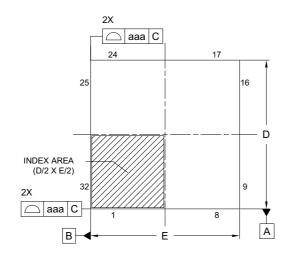


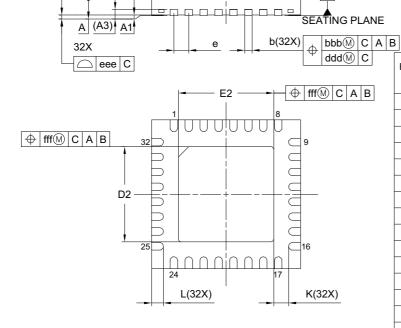
NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
- 1	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15

©2012 Renesas Electronics Corporation. All rights reserved.

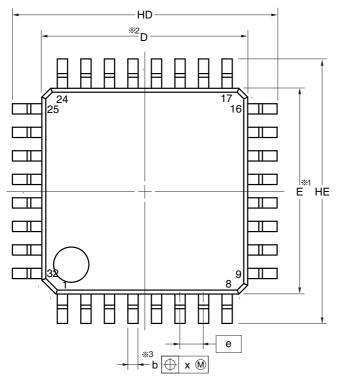

С

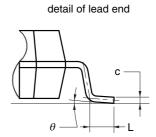

3.2 32-Pin Products

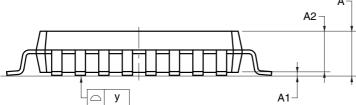
// ccc C

R7F100GBF3CNP, R7F100GBG3CNP, R7F100GBH3CNP, R7F100GBJ3CNP R7F100GBF2DNP, R7F100GBG2DNP, R7F100GBH2DNP, R7F100GBJ2DNP

JEITA Package code	RENESAS code	MASS (TYP.)[g]
P-HWQFN032-5x5-0.50	PWQN0032KE-A	0.06






_					
Reference	Dimension in Millimeters				
Symbol	Min.	Nom.	Max.		
Α	_	_	0.80		
A ₁	0.00	0.02	0.05		
A ₃	(0.203 REF			
b	0.18	0.25	0.30		
D		5.00 BSC			
Е	5.00 BSC				
е	0.50 BSC				
L	0.35	0.40	0.45		
K	0.20	_	_		
D ₂	3.15	3.20	3.25		
E ₂	3.15	3.20	3.25		
aaa		0.15			
bbb		0.10			
ccc		0.10			
ddd		0.05			
eee	0.08				
fff	0.10				

R7F100GBF3CFP, R7F100GBG3CFP, R7F100GBH3CFP, R7F100GBJ3CFP R7F100GBF2DFP, R7F100GBG2DFP, R7F100GBH2DFP, R7F100GBJ2DFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

(UNIT:mm)

	(01111111111)
ITEM	DIMENSIONS
D	7.00±0.10
E	7.00±0.10
HD	9.00±0.20
HE	9.00±0.20
Α	1.70 MAX.
A1	0.10±0.10
A2	1.40
b	0.37±0.05
С	0.145±0.055
L	0.50±0.20
θ	0° to 8°
е	0.80
х	0.20
у	0.10

NOTE

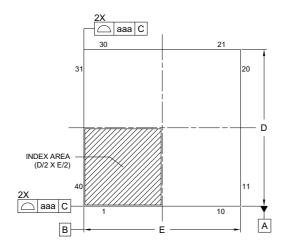
- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

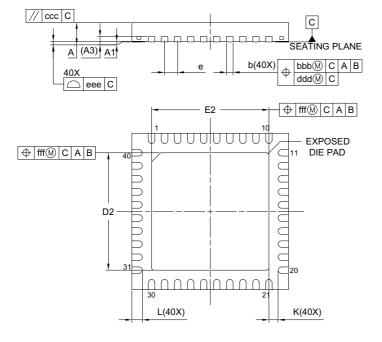
© 2012 Renesas Electronics Corporation. All rights reserved.

3.3 36-Pin Products

R7F100GCF3CLA, R7F100GCG3CLA, R7F100GCH3CLA, R7F100GCJ3CLA R7F100GCF2DLA, R7F100GCG2DLA, R7F100GCH2DLA, R7F100GCJ2DLA

Contact a Renesas Electronics sales office for details.




3.4 40-Pin Products

R7F100GEF3CNP, R7F100GEG3CNP, R7F100GEH3CNP, R7F100GEJ3CNP R7F100GEF2DNP, R7F100GEG2DNP, R7F100GEH2DNP, R7F100GEJ2DNP

<R>

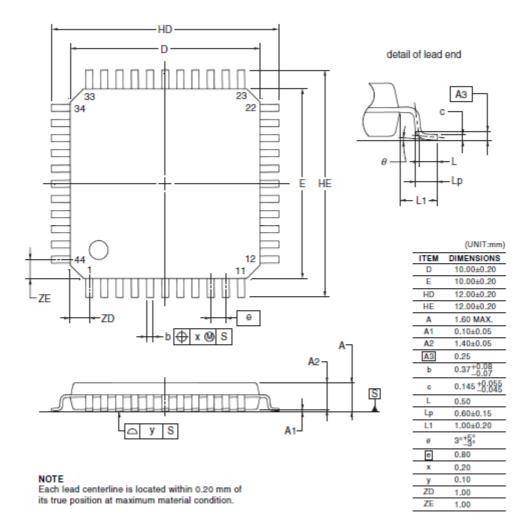
JEITA Package code	RENESAS code	MASS (TYP.)[g]
P-HWQFN040-6x6-0.50	PWQN0040KD-A	0.08

Reference	Dimension in Millimeters			
Symbol	Min.	Nom.	Max.	
Α	_	_	0.80	
A ₁	0.00	0.02	0.05	
A ₃		0.203 REF		
b	0.18	0.25	0.30	
D	6.00 BSC			
E	6.00 BSC			
е		0.50 BSC		
L	0.30	0.40	0.50	
K	0.20	_	_	
D ₂	4.45	4.50	4.55	
E ₂	4.45	4.50	4.55	
aaa		0.15		
bbb		0.10		
ccc		0.10		
ddd		0.05		
eee	0.08			
fff	0.10			

3.5 44-Pin Products

R7F100GFF3CFP, R7F100GFG3CFP, R7F100GFH3CFP, R7F100GFJ3CFP

R7F100GFK3CFP, R7F100GFL3CFP

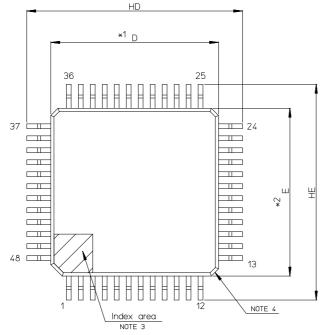

R7F100GFN3CFP

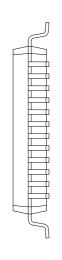
R7F100GFF2DFP, R7F100GFG2DFP, R7F100GFH2DFP, R7F100GFJ2DFP

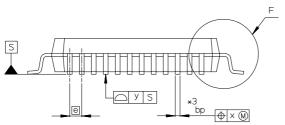
R7F100GFK2DFP, R7F100GFL2DFP

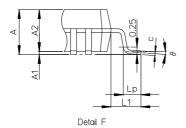
R7F100GFN2DFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36



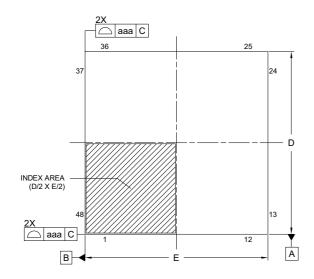

© 2012 Renesas Electronics Corporation. All rights reserved.


3.6 48-Pin Products


R7F100GGF3CFB, R7F100GGG3CFB, R7F100GGH3CFB, R7F100GGJ3CFB R7F100GGK3CFB, R7F100GGL3CFB, R7F100GGN3CFB R7F100GGF2DFB, R7F100GGG2DFB, R7F100GGH2DFB, R7F100GGJ2DFB R7F100GGK2DFB, R7F100GGL2DFB, R7F100GGN2CFB

JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]	l
P-LFQFP48-7×7-0.50	PLQP0048KB-B		0.2g	ĺ

NOTE)


- 1. 2. 3.
- DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH.
 DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.
 PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
 LOCATED WITHIN THE HATCHED ARE,
 CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.

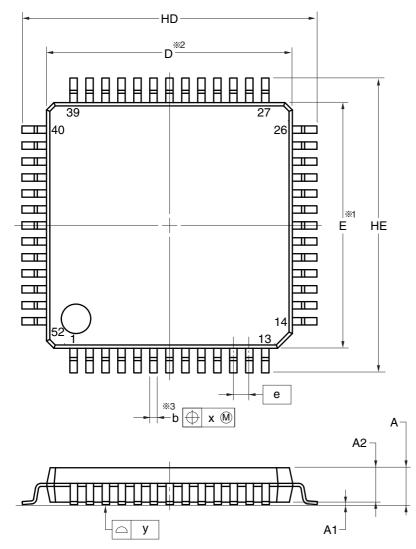

Reference	Dimens	ion in Mil	limeters
Symbol	Min	Nom	Max
D	6.9	7.0	7.1
Е	6.9	7.0	7.1
A2		1.4	
HD	8.8	9.0	9.2
HE	8.8	9.0	9.2
А			1.7
A1	0.05		0.15
bp	0.17	0.20	0.27
С	0.09		0.20
θ	0 °	3.5°	8 °
е		0.5	
×			0.08
У			0.08
Lp	0.45	0.6	0.75
L1		1.0	

R7F100GGF3CNP, R7F100GGG3CNP, R7F100GGH3CNP, R7F100GGJ3CNP R7F100GGK3CNP, R7F100GGL3CNP, R7F100GGN3CNP R7F100GGF2DNP, R7F100GGG2DNP, R7F100GGH2DNP, R7F100GGJ2DNP R7F100GGK2DNP, R7F100GGL2DNP, R7F100GGN2CNP

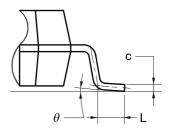
<R>

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN048-7x7-0.50	PWQN0048KC-A	0.13 g

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
Α	_	_	0.80
A ₁	0.00	0.02	0.05
A₃		0.203 REF	
b	0.20	0.25	0.30
D	7.00 BSC		
E	7.00 BSC		
е	0.50 BSC		
L	0.30	0.40	0.50
К	0.20	_	_
D ₂	5.25	5.30	5.35
E ₂	5.25	5.30	5.35
aaa		0.15	
bbb		0.10	
ccc	0.10		
ddd	0.05		
eee	0.08		
fff	0.10		


С

// ccc C


3.7 52-Pin Products

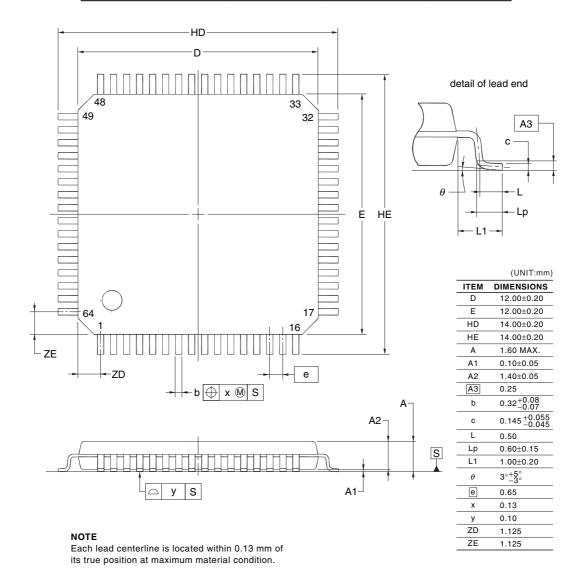
R7F100GJF3CFA, R7F100GJG3CFA, R7F100GJH3CFA, R7F100GJJ3CFA R7F100GJK3CFA, R7F100GJL3CFA, R7F100GJN3CFA R7F100GJF2DFA, R7F100GJG2DFA, R7F100GJH2DFA, R7F100GJJ2DFA R7F100GJK2DFA, R7F100GJL2DFA, R7F100GJN2DFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

detail of lead end

NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

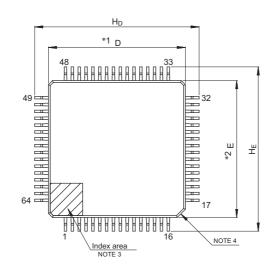

	(UNIT:mm)
ITEM	DIMENSIONS
D	10.00±0.10
E	10.00±0.10
HD	12.00±0.20
HE	12.00±0.20
A	1.70 MAX.
A1	0.10±0.05
A2	1.40
b	0.32±0.05
С	0.145±0.055
L	0.50±0.15
θ	0° to 8°
е	0.65
х	0.13
У	0.10

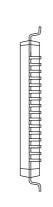
© 2012 Renesas Electronics Corporation. All rights reserved.

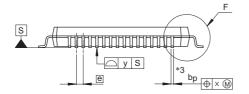
3.8 64-Pin Products

R7F100GLF3CFA, R7F100GLG3CFA, R7F100GLH3CFA, R7F100GLJ3CFA R7F100GLK3CFA, R7F100GLL3CFA, R7F100GLN3CFA R7F100GLF2DFA, R7F100GLG2DFA, R7F100GLH2DFA, R7F100GLJ2DFA R7F100GLK2DFA, R7F100GLL2DFA, R7F100GLN2DFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-12x12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51

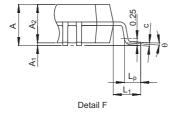



©2012 Renesas Electronics Corporation. All rights reserved.


R7F100GLF3CFB, R7F100GLG3CFB, R7F100GLH3CFB, R7F100GLJ3CFB, R7F100GLK3CFB, R7F100GLL3CFB, R7F100GLN3CFB R7F100GLF2DFB, R7F100GLG2DFB, R7F100GLH2DFB, R7F100GLJ2DFB, R7F100GLK2DFB, R7F100GLL2DFB, R7F100GLN2DFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-LFQFP64-10x10-0.50	PLQP0064KB-C	_	0.3

Unit: mm



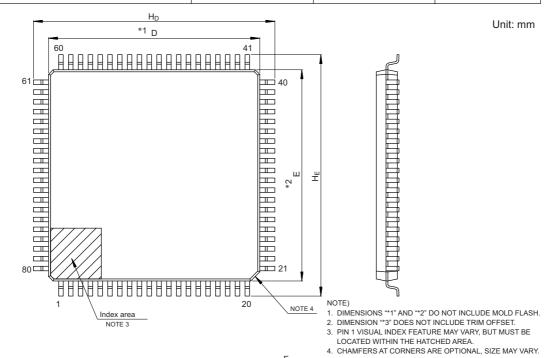
- 1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH.
 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.
 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE

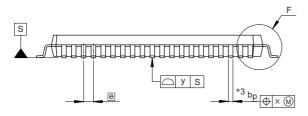
- LOCATED WITHIN THE HATCHED AREA.
 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.

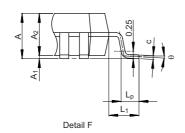
Reference	Dimensions in millimeters			
Symbol	Min	Nom	Max	
D	9.9	10.0	10.1	
Е	9.9	10.0	10.1	
A ₂	-	1.4	_	
H_D	11.8	12.0	12.2	
HE	11.8	12.0	12.2	
Α	_	_	1.7	
A ₁	0.05	_	0.15	
bp	0.15	0.20	0.27	
С	0.09	_	0.20	
θ	0°	3.5°	8°	
е	-	0.5	_	
х		_	0.08	
У		_	0.08	
Lp	0.45	0.6	0.75	
L ₁		1.0	_	

© 2015 Renesas Electronics Corporation. All rights reserved.

R7F100GLF3CLA, R7F100GLG3CLA, R7F100GLH3CLA, R7F100GLJ3CLA, R7F100GLK3CLA, R7F100GLL3CLA, R7F100GLN3CLA R7F100GLF2DLA, R7F100GLG2DLA, R7F100GLH2DLA, R7F100GLJ2DLA, R7F100GLK2DLA, R7F100GLL2DLA, R7F100GLN2DLA

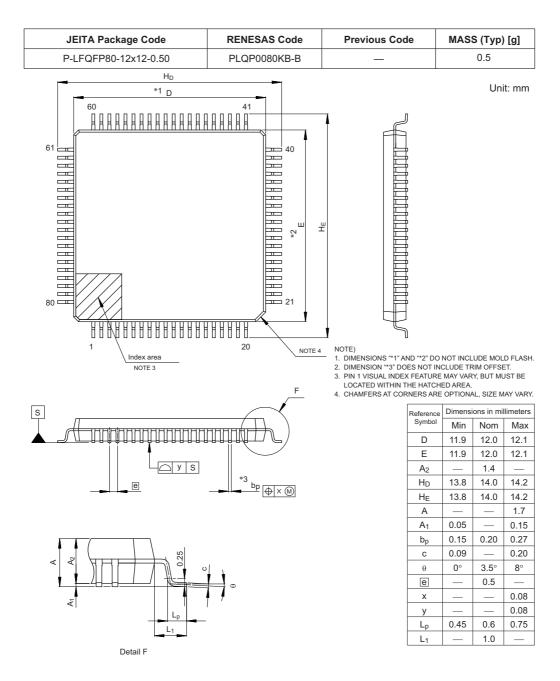

Contact a Renesas Electronics sales office for details.




3.9 80-Pin Products

R7F100GMG3CFA, R7F100GMH3CFA, R7F100GMJ3CFA, R7F100GMK3CFA, R7F100GML3CFA, R7F100GMN3CFA
R7F100GMG2DFA, R7F100GMH2DFA, R7F100GM2DFA, R7F100GMK2DFA, R7F100GML2DFA, R7F100GMN2DFA

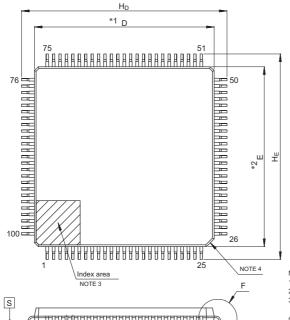
JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-LQFP80-14x14-0.65	PLQP0080JA-B	_	0.6



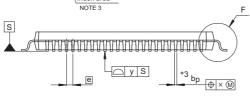
Reference	Dimensions in millimeters		
Symbol	Min	Nom	Max
D	13.9	14.0	14.1
E	13.9	14.0	14.1
A ₂	_	1.4	
H_D	15.8	16.0	16.2
HE	15.8	16.0	16.2
Α	_	_	1.7
A ₁	0.05	_	0.15
bp	0.22	0.30	0.38
С	0.09	_	0.20
θ	0°	3.5°	8°
е	_	0.65	_
х	_	_	0.13
У	_	_	0.10
Lp	0.45	0.6	0.75
L ₁		1.0	_

© 2016 Renesas Electronics Corporation. All rights reserved.

R7F100GMG3CFB, R7F100GMH3CFB, R7F100GMJ3CFB, R7F100GMK3CFB, R7F100GML3CFB, R7F100GML3CFB, R7F100GMC2DFB, R7F100GMH2DFB, R7F100GML2DFB, R7F100GML2DFB, R7F100GML2DFB, R7F100GML2DFB



© 2017 Renesas Electronics Corporation. All rights reserved.


3.10 100-Pin Products

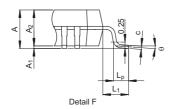
R7F100GPG3CFB, R7F100GPH3CFB, R7F100GPJ3CFB, R7F100GPK3CFB, R7F100GPL3CFB, R7F100GPN3CFB R7F100GPG2DFB, R7F100GPH2DFB, R7F100GPJ2DFB, R7F100GPK2DFB, R7F100GPL2DFB, R7F100GPN2DFB

JEITA Pack	age Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-LFQFP100-	-14x14-0.50	PLQP0100KB-B	_	0.6

Unit: mm

NOTE)

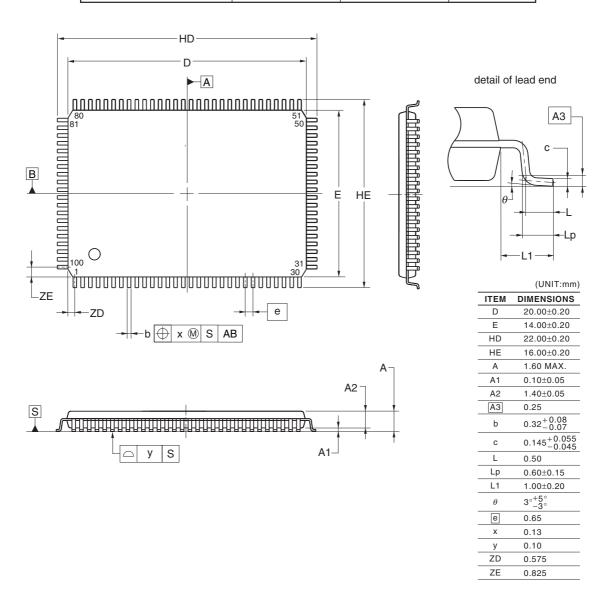
- NOTE)


 1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH.

 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.

 3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA.

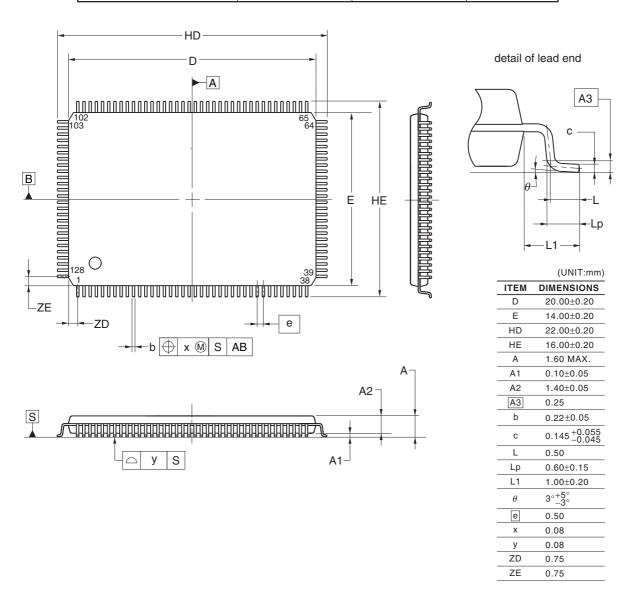
 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.


Reference	Dimensions in millimeters		
Symbol	Min	Nom	Max
D	13.9	14.0	14.1
E	13.9	14.0	14.1
A ₂	_	1.4	_
H _D	15.8	16.0	16.2
HE	15.8	16.0	16.2
Α	_	_	1.7
A ₁	0.05	_	0.15
bp	0.15	0.20	0.27
С	0.09	_	0.20
θ	0°	3.5°	8°
е		0.5	_
х		_	0.08
у	_		0.08
Lp	0.45	0.6	0.75
L ₁	_	1.0	_

© 2015 Renesas Electronics Corporation. All rights reserved.

R7F100GPG3CFA, R7F100GPH3CFA, R7F100GPJ3CFA, R7F100GPK3CFA, R7F100GPL3CFA, R7F100GPN3CFA
R7F100GPG2DFA, R7F100GPH2DFA, R7F100GPJ2DFA, R7F100GPK2DFA, R7F100GPL2DFA, R7F100GPN2DFA

JE	EITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-L	QFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92



©2012 Renesas Electronics Corporation. All rights reserved.

3.11 128-Pin Products

R7F100GSJ3CFB, R7F100GSK3CFB, R7F100GSL3CFB, R7F100GSN3CFB R7F100GSJ2DFB, R7F100GSK2DFB, R7F100GSL2DFB, R7F100GSN2DFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP128-14x20-0.50	PLQP0128KD-A	P128GF-50-GBP-1	0.92

©2012 Renesas Electronics Corporation. All rights reserved.

RF\	/ISI	ON	HIST	TORY
	/ IOI	OIN	ПІО	IONI

RL78/G23 Datasheet

Davi Data			Description	
Rev.	Date	Page	Summary	
1.00	Apr 13, 2021	_	First edition issued	
1.10	Nov 18, 2021	All	The module name for 3-wire SPI was changed to simplified SPI.	
		All	The module name for SPI was changed to simplified SPI.	
		p.1	The operating current in the title was modified.	
		p.1	1.1 Features: The descriptions of Middle-speed on-chip oscillator were modified.	
		p.2	1.1 Features: The descriptions of Timers were modified.	
		p.4	Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G23 was modified.	
		p.11	1.3.4 40-pin products: Figure was modified.	
		p.12	1.3.5 44-pin products: Figure was modified.	
		p.13	1.3.6 48-pin products: Note 2 was modified.	
		p.13	1.3.6 48-pin products: Remark 3 was added.	
		p.23	1.5 Block Diagram was modified.	
		p.24 to p.26	1.6 Outline of Functions [30-, 32-, 36-, 40-, 44-, and 48-pin products]: The descriptions were modified.	
		p.27 to p.29	1.6 Outline of Functions [52-, 64-, 80-, 100-, and 128-pin products]: The descriptions were modified.	
		p.31	2.1 Absolute Maximum Ratings: Note was modified.	
		p.32	2.2.1 Characteristics of the X1 and XT1 oscillators: Condition was modified.	
		p.35	2.3.1 Pin characteristics: Notes 4 to 6 were modified.	
		p.36, p.37	2.3.1 Pin characteristics: Notes 3, 5, and 6 were modified.	
		p.43 to p.49	2.3.2 Supply current characteristics, (1) 30- to 64-pin package products with 96-to 128-Kbyte flash ROM: The descriptions in the tables were modified.	
		p.50 to p.56	2.3.2 Supply current characteristics, (2) 30- to 64-pin package products with 192-to 256-Kbyte flash ROM and 80-pin package product with 128- to 256-Kbyte flash ROM was added.	
		p.57 to p.63	2.3.2 Supply current characteristics, (3) 44- to 80-pin package products with 384-to 768-Kbyte flash ROM and 100- to 128-pin package products was added.	
		p.64 to p.66	2.3.2 Supply current characteristics, (4) Peripheral Functions (Common to all products): The descriptions in the tables were added. Notes 13, 14, and 16 were modified. Note 19 was modified.	
		p.102	2.5.2 Serial interface UARTA: The table was modified.	
		p.106	2.6.1 A/D converter characteristics, (1) Normal modes 1 and 2: The descriptions in the table were modified.	
		p.108	2.6.1 A/D converter characteristics, (2) Low-voltage modes 1 and 2: The descriptions in the table were modified.	
		P.110	2.6.1 A/D converter characteristics, (3) When the internal reference voltage is selected as reference voltage (+): The descriptions in the table were modified.	
		p.111	2.6.4 Comparator characteristics: The descriptions in the table were modified.	
		p.114	2.6.6 LVD circuit characteristics, (2) LVD1 Detection Voltage of Reset Mode and Interrupt Mode: The table was modified.	

Rev.	Date	Description		
		Page	Summary	
1.10	Nov 18, 2021	p.117 2.8 Flash Memory Programming Characteristics, (2) Data flash memory: The descriptions in the table were modified.		
		p.123	3.4 40-Pin Products: The figure was added.	
		p.126	3.6 48-Pin Products: The figure was added.	

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/