Self-Protected Low Side Driver with Temperature and Current Limit

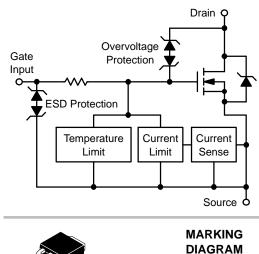
NCV8401A/B is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments.

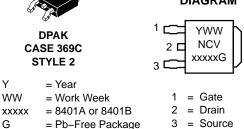
Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- Over Voltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial




ON Semiconductor®

www.onsemi.com

V _{DSS} (Clamped)	R _{DS(ON)} TYP	I _D MAX (Limited)
42 V	23 mΩ @ 10 V	33 A*

*Max current may be limited below this value depending on input conditions.

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8401ADTRKG	DPAK (Pb-Free)	2500/Tape & Reel
NCV8401BDTRKG	DPAK (Pb–Free)	2500/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

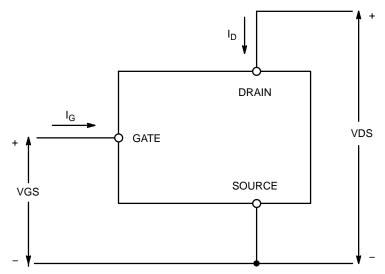
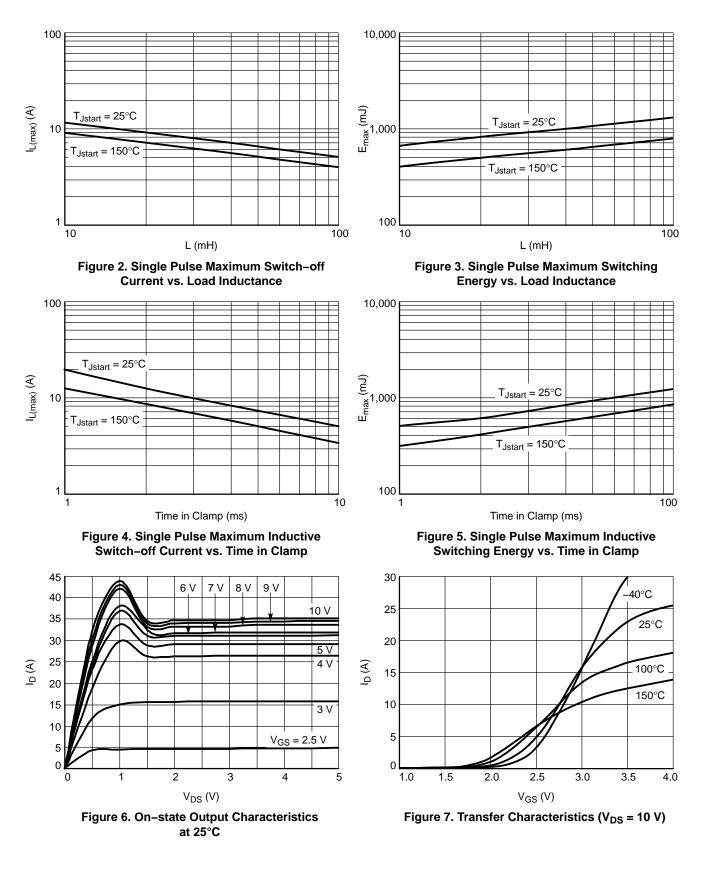
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

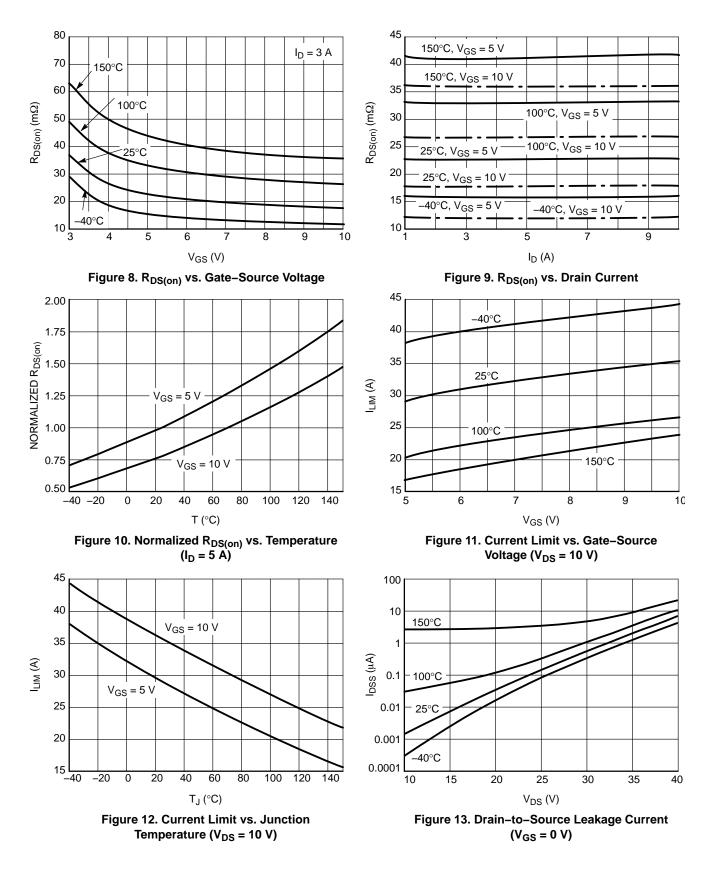
Rating		Value	Unit
Drain-to-Source Voltage Internally Clamped		42	V
Drain-to-Gate Voltage Internally Clamped (R _{GS} = 1	.0 MΩ) V _{DGR}	42	V
Gate-to-Source Voltage	V _{GS}	±14	V
Drain Current – Continuous	۱ _D	Internally Limited	
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1) @ $T_A = 25^{\circ}C$ (Note 2)	PD	1.1 2.0	W
Thermal Resistance, Junction-to-Case Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	R _{θJC} R _{θJA} R _{θJA}	1.6 110 60	°C/W
Single Pulse Drain–to–Source Avalanche Energy (V_{DD} = 25 Vdc, V_{GS} = 5.0 Vdc, I_L = 3.65 Apk, L = 120 mH, R_G = 25 Ω , T_{Jstart} = 150°C) (I	E _{AS}	800	mJ
Load Dump Voltage (V_{GS} = 0 and 10 V, R_I = 2.0 Ω , R _L = 3.0 Ω , t _d = 400 ms)	V _{LD}	65	V
Operating Junction Temperature	TJ	-40 to 150	°C
Storage Temperature	T _{stg}	-55 to 150	°C

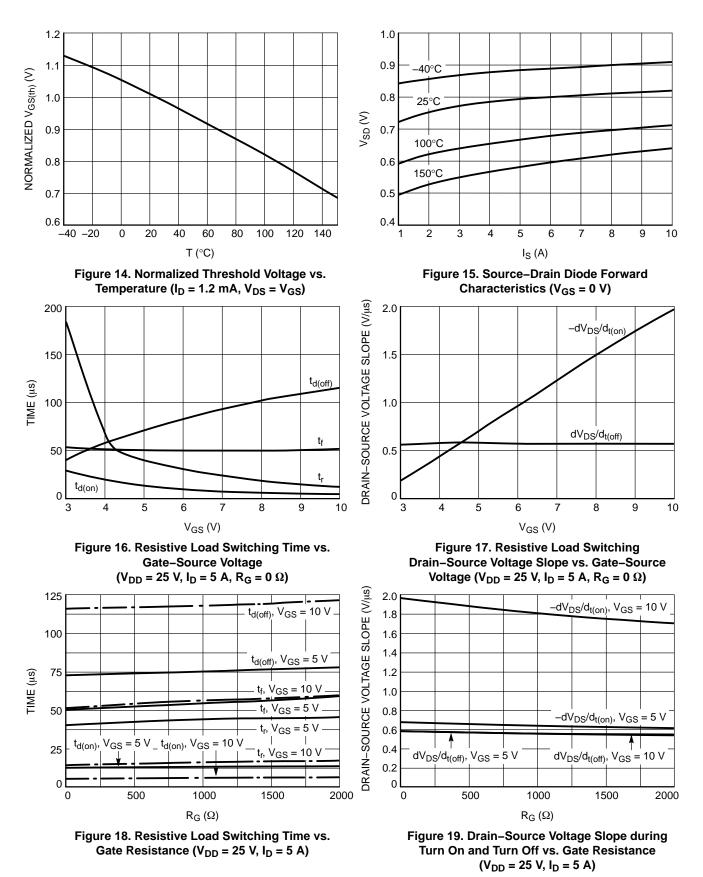
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Minimum FR4 PCB, steady state.

Mounted onto a 2" square FR4 board (1" square, 2 oz. Cu 0.06" thick single-sided, t = steady state).

3. Not subject to production testing.


Figure 1. Voltage and Current Convention


MOSFET ELECTRICAL	CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)
-------------------	--

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		-				
Drain-to-Source Clamped Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu\text{Adc})$ $(V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu\text{Adc}, T_J = 150^{\circ}\text{C}) \text{ (Note 4)}$		V _{(BR)DSS}	42 42	46 44	50 50	Vdc
Zero Gate Voltage Drain Current $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 150^{\circ}\text{C}) \text{ (Note 4)}$		I _{DSS}		1.5 6.5	5.0	μAdc
Gate Input Current (V_{GS} = 5.0 Vdc, V_{DS} = 0 Vdc)		I _{GSSF}		50	100	μAdc
ON CHARACTERISTICS						
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 1.2 \text{ mAdc})$ Threshold Temperature Coefficient		V _{GS(th)}	1.0	1.8 5.0	2.0	Vdc –mV/°C
Static Drain–to–Source On–Resistance (Note 5) ($V_{GS} = 10 \text{ Vdc}, I_D = 5.0 \text{ Adc}, T_J @ 25^{\circ}\text{C}$) ($V_{GS} = 10 \text{ Vdc}, I_D = 5.0 \text{ Adc}, T_J @ 150^{\circ}\text{C}$) (Note 4)		R _{DS(on)}		23 43	29 55	mΩ
$ Static Drain-to-Source On-Resistance (Note 5) \\ (V_{GS} = 5.0 \ Vdc, \ I_D = 5.0 \ Adc, \ T_J @ 25^{\circ}C) \\ (V_{GS} = 5.0 \ Vdc, \ I_D = 5.0 \ Adc, \ T_J @ 150^{\circ}C) \ (Note 4) $		R _{DS(on)}		28 50	34 60	mΩ
Source–Drain Forward On Voltage $(I_S = 5 A, V_{GS} = 0 V)$		V _{SD}		0.80	1.1	V
SWITCHING CHARACTERISTICS (Note	4)					•
Turn–ON Time (10% V_{IN} to 90% $\text{I}_{\text{D}})$	V _{IN} = 0 V to 5 V, V _{DD} = 25 V	t _{ON}		41	50	μs
Turn–OFF Time (90% V_{IN} to 10% I_D)	$I_D = 1.0 \text{ A}, \text{ Ext } R_G = 2.5 \Omega$	t _{OFF}		129	150	
Turn–ON Time (10% V _{IN} to 90% I _D)	V_{IN} = 0 V to 10 V, V_{DD} = 25 V, I_{D} = 1.0 A, Ext R_{\text{G}} = 2.5 Ω	t _{ON}		16	25	1
Turn–OFF Time (90% V_{IN} to 10% $I_{\text{D}})$		t _{OFF}		164	180	
Slew–Rate ON (80% V_{DS} to 50% $V_{DS})$	V _{in} = 0 to 10 V, V _{DD} = 12 V,	-dV _{DS} /dt _{ON}		1.27	2.0	V/µs
Slew–Rate OFF (50% V_{DS} to 80% $V_{DS})$	$R_L = 4.7 \Omega$	dV _{DS} /dt _{OFF}		0.36	0.75	
SELF PROTECTION CHARACTERISTIC	S ($T_J = 25^{\circ}C$ unless otherwise noted)					
Current Limit	$V_{GS} = 5.0 \text{ V}, V_{DS} = 10 \text{ V}$ $V_{GS} = 5.0 \text{ V}, T_J = 150^{\circ}\text{C}$ (Note 4)	I _{LIM}	25 11	30 16	35 21	Adc
	V_{GS} = 10 V, V_{DS} = 10 V V_{GS} = 10 V, T_{J} = 150°C (Note 4)		30 18	35 25	40 28	
Temperature Limit (Turn-off)	V _{GS} = 5.0 V (Note 4)	T _{LIM(off)}	150	175	200	°C
Thermal Hysteresis	V _{GS} = 5.0 V	$\Delta T_{LIM(on)}$		15		°C
Temperature Limit (Turn-off)	V _{GS} = 10 V (Note 4)	T _{LIM(off)}	150	165	185	°C
Thermal Hysteresis	V _{GS} = 10 V	$\Delta T_{LIM(on)}$		15		°C
GATE INPUT CHARACTERISTICS (Note	4)		-	_	-	
Device ON Gate Input Current	$V_{GS} = 5 V I_{D} = 1.0 A$	I _{GON}		50	100	μΑ
	$V_{GS} = 10 \text{ V} \text{ I}_{D} = 1.0 \text{ A}$			400	700	
Current Limit Gate Input Current	V_{GS} = 5 V, V_{DS} = 10 V	I _{GCL}		0.1	0.5	mA
	V_{GS} = 10 V, V_{DS} = 10 V			0.7	1.0	
Thermal Limit Fault Gate Input Current	V_{GS} = 5 V, V_{DS} = 10 V	I _{GTL}		0.6	1.0	mA
	V_{GS} = 10 V, V_{DS} = 10 V			2.0	4.0	
ESD ELECTRICAL CHARACTERISTICS	$(T_J = 25^{\circ}C \text{ unless otherwise noted})$ (N	lote 4)				
Electro–Static Discharge Capability Human Body Model (HBM) Machine Model (MM)		ESD	4000 400			V

4. Not subject to production testing. 5. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

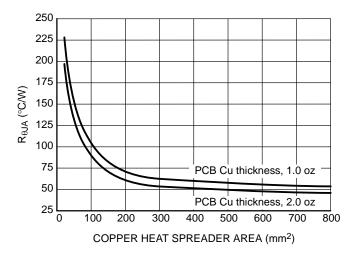


Figure 20. $R_{\theta JA}$ vs. Copper Area

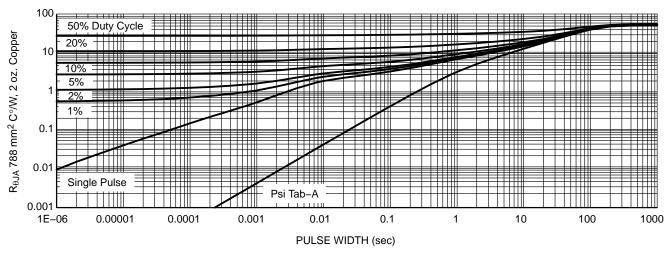
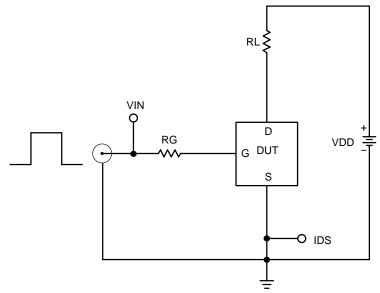
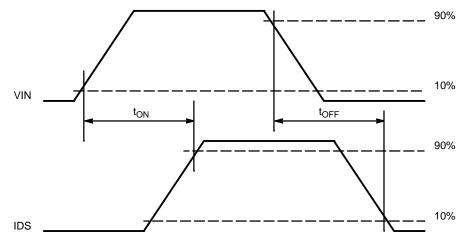
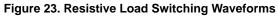
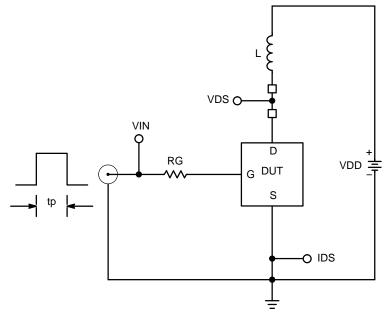
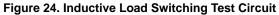


Figure 21. Transient Thermal Resistance

TEST CIRCUITS AND WAVEFORMS


Figure 22. Resistive Load Switching Test Circuit

TEST CIRCUITS AND WAVEFORMS

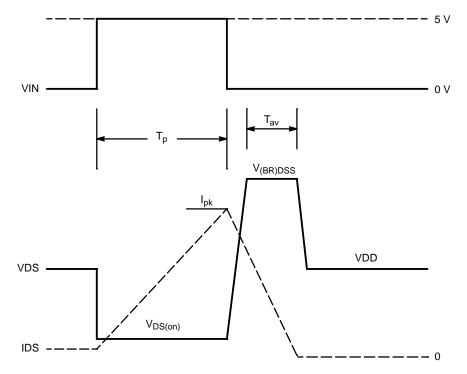
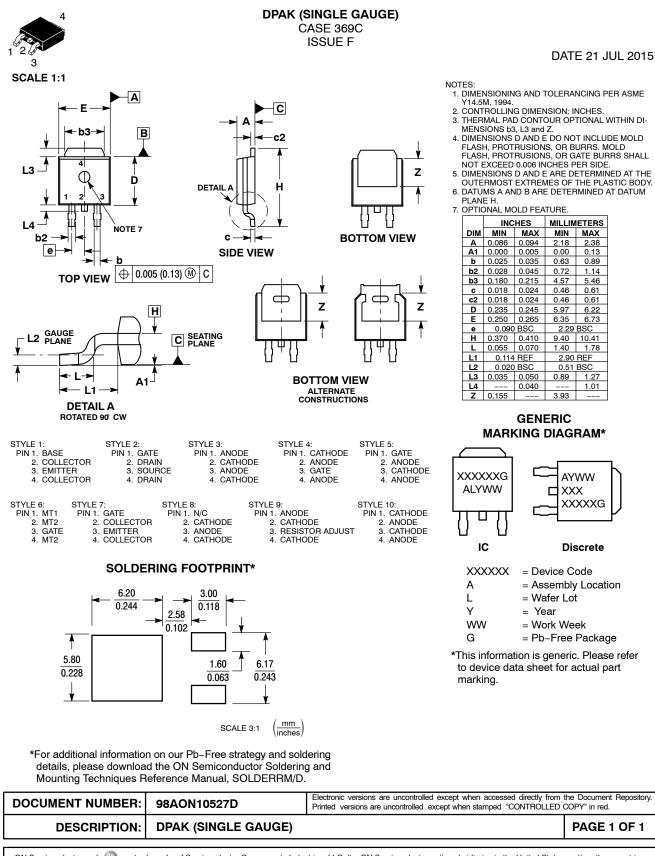



Figure 25. Inductive Load Switching Waveforms

HDPlus is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights for the res.

© Semiconductor Components Industries, LLC, 2018

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative