FDMF5826DC - Smart Power Stage (SPS) Module with Integrated Temperature Monitor

Features

- Ultra-Compact $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ PQFN Copper-Clip Package with Flip Chip Low-Side MOSFET and Dual Cool Architecture
- High Current Handling: 60 A
- 3-State 5 V PWM Input Gate Driver
- Dynamic Resistance Mode for Low-Side Drive (LDRV) Slows Low-Side MOSFET during Negative Inductor Current Switching
- Auto DCM (Low-Side Gate Turn Off) Using ZCD\# Input
- Thermal Monitor for Module Temperature Reporting
- HS-Short Detect Fault\# / Shutdown
- Dual Mode Enable / Fault\# Pin
- Internal Pull-Up and Pull-Down for ZCD\# and EN Inputs, respectively
- Fairchild PowerTrench ${ }^{\circledR}$ MOSFETs for Clean Voltage Waveforms and Reduced Ringing
- Fairchild SyncFET ${ }^{\text {TM }}$ Technology (Integrated Schottky Diode) in Low-Side MOSFET
- Integrated Bootstrap Schottky Diode
- Optimized / Extremely Short Dead-Times
- Under-Voltage Lockout (UVLO) on VCC
- Optimized for Switching Frequencies up to 1.5 MHz
- PWM Minimum Controllable On-Time: 30 ns
- Low Shutdown Current: < 2 mA
- Optimized FET Pair for Highest Efficiency: 10 ~ 15\% Duty Cycle
- Operating Junction Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Fairchild Green Packaging and RoHS Compliance

Description

The SPS family is Fairchild's next-generation, fully optimized, ultra-compact, integrated MOSFET plus driver power stage solution for high-current, highfrequency, synchronous buck, DC-DC applications. The FDMF5826DC integrates a driver IC with a bootstrap Schottky diode, two power MOSFETs, and a thermal monitor into a thermally enhanced, ultra-compact, 5 mm x 5 mm package.
With an integrated approach, the SPS switching power stage is optimized for driver and MOSFET dynamic performance, minimized system inductance, and power MOSFET R $\mathrm{RS}_{\mathrm{DS}(\mathrm{ON}) \text {. The SPS family uses Fairchild's high- }}$ performance PowerTrench ${ }^{\circledR}$ MOSFET technology, which reduces switch ringing, eliminating the need for a snubber circuit in most buck converter applications.

A driver IC with reduced dead times and propagation delays further enhances the performance. A thermal monitor function warns of a potential over-temperature situation. The FDMF5826DC incorporates an Auto-DCM Mode (ZCD\#) for improved light-load efficiency. The FDMF5826DC also provides a 3-state 5 V PWM input for compatibility with a wide range of PWM controllers.

Applications

- Servers and Workstations, V-Core and Non-V-Core DC-DC Converters
- Desktop and All-in-One Computers, V-Core and Non-V-Core DC-DC Converters
- High-Performance Gaming Motherboards
- High-Current DC-DC Point-of-Load Converters
- Networking and Telecom Microprocessor Voltage Regulators
- Small Form-Factor Voltage Regulator Modules

Ordering Information

Part Number	Current Rating	Package	Top Mark
FDMF5826DC	60 A	31-Lead, Clip Bond PQFN SPS, $5.0 \mathrm{~mm} \times 5.0 \mathrm{~mm}$ Package	5826 DC

Application Diagram

Figure 1. Typical Application Diagram
Functional Block Diagram

Figure 2. Functional Block Diagram

Pin Configuration

Figure 3. Pin Configuration - Top View and Transparent View

Pin Definitions

Pin \#	Name	Description
1	PWM	PWM input to the gate driver IC
2	ZCD\#	Enable input for the ZCD (Auto DCM) comparator
3	VCC	Power supply input for all analog control functions; this is the "quiet" VCC
4,32	AGND	Analog ground for analog portions of the IC and for substrate, internally tied to PGND
5	BOOT	Supply for the high-side MOSFET gate driver. A capacitor from BOOT to PHASE supplies the charge to turn on the N-channel high-side MOSFET
6	NC	No connect
7	PHASE	Return connection for the boot capacitor, internally tied to SW node
$8 \sim 11$	VIN	Power input for the power stage
$12 \sim 15,28$	PGND	Power return for the power stage
$16 \sim 26$	SW	Switching node junction between high-side and low-side MOSFETs; also input to the gate driver SW node comparator and input into the ZCD comparator
27,33	GL	Gate Low, Low-side MOSFET gate monitor
29	PVCC	Power supply input for LS ${ }^{(1)}$ gate driver and boot diode
30	TMON	Temperature monitoring \& reporting pin
31	EN / FAULT\#	Dual-functionality: enable input to the gate driver IC; FAULT\# - internal pull-down physically pulls this pin LOW upon detection of fault condition (HS ${ }^{(2)}$ MOSFET short)

Notes:

1. $\mathrm{LS}=$ Low Side.
2. $\mathrm{HS}=$ High Side.

Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Min.	Max.	Unit
V_{cc}	Supply Voltage	Referenced to AGND	-0.3	6.0	V
PV CC	Drive Voltage	Referenced to AGND	-0.3	6.0	V
Venffault\#	Output Enable / Disable	Referenced to AGND	-0.3	6.0	V
$\mathrm{V}_{\text {PWM }}$	PWM Signal Input	Referenced to AGND	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {zCD\# }}$	ZCD Mode Input	Referenced to AGND	-0.3	6.0	V
V_{GL}	Low Gate Manufacturing Test Pin	Referenced to AGND (DC Only)	-0.3	6.0	V
		Referenced to AGND, AC < 20 ns	-3.0	6.0	
$\mathrm{V}_{\text {TMON }}$	Thermal Monitor	Referenced to AGND	-0.3	6.0	V
$\mathrm{V}_{\text {IN }}$	Power Input	Referenced to PGND, AGND	-0.3	25.0	V
$V_{\text {PHASE }}$	PHASE	Referenced to PGND, AGND (DC Only)	-0.3	25.0	V
		Referenced to PGND, AC < 20 ns	-7.0	30.0	
$\mathrm{V}_{\text {SW }}$	Switch Node Input	Referenced to PGND, AGND (DC Only)	-0.3	25.0	V
		Referenced to PGND, AC < 20 ns	-7.0	30.0	
$V_{\text {воот }}$	Bootstrap Supply	Referenced to AGND (DC Only)	-0.3	30.0	V
		Referenced to AGND, AC < 20 ns	-5.0	35.0	
$\mathrm{V}_{\text {BOOT-PHASE }}$	Boot to PHASE Voltage	Referenced to PVCC	-0.3	6.0	V
$\mathrm{lo}(\mathrm{AV})^{(3)}$	Output Current	$\mathrm{fsw}_{\text {S }}=300 \mathrm{kHz}, \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.8 \mathrm{~V}$		60	A
		$\mathrm{f}_{\text {SW }}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.8 \mathrm{~V}$		55	
$\mathrm{I}_{\text {FAULT }}$	EN / FAULT\# Sink Current		-0.1	7.0	mA
θ_{J-A}	Junction-to-Ambient Thermal Resistance			12.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{J-P C B}$	Junction-to-PCB Thermal Resistance (under Fairchild SPS Thermal Board)			1.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{A}	Ambient Temperature Range		-40	+125	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-55	+150	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic Discharge Protection	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	3000		V
		Charged Device Model, JESD22-C101	2500		

Note:

3. $\mathrm{l}_{\mathrm{O}(\mathrm{AV})}$ is rated with testing Fairchild's SPS evaluation board at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with natural convection cooling. This rating is limited by the peak SPS temperature, $T_{J}=150^{\circ} \mathrm{C}$, and varies depending on operating conditions and PCB layout. This rating may be changed with different application settings.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended Operating Conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{CC}	Control Circuit Supply Voltage	4.5	5.0	5.5	V
$\mathrm{PV}_{\mathrm{CC}}$	Gate Drive Circuit Supply Voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Output Stage Supply Voltage	$4.5^{(4)}$	12.0	$16.0^{(5)}$	V

Notes:

4. $\quad 3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{IN}}$ is possible according to the application condition.
5. Operating at high $\mathrm{V}_{\text {IN }}$ can create excessive AC voltage overshoots on the SW-to-GND and BOOT-to-GND nodes during MOSFET switching transient. For reliable SPS operation, SW to GND and BOOT to GND must remain at or below the Absolute Maximum Ratings in the table above.

Electrical Characteristics

Typical value is under $\mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{~V}_{C C}=P \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ unless otherwise noted. Minimum / Maximum values are under $\mathrm{V}_{\mathbb{I}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=P \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ and $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}=-40 \sim 125^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
Basic Operation						
I_{0}	Quiescent Current	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=\mathrm{Ivcc}^{+} \text {Ipvcc, EN=HIGH, PWM=LOW or } \\ & \text { HIGH or Float (Non-Switching) } \end{aligned}$			2	mA
ISHDN	Shutdown Current	$\mathrm{I}_{\text {SHDN }}=\mathrm{I}_{\text {VCC }}+\mathrm{I}_{\text {PVCC }}$, EN=GND			2	mA
$\mathrm{V}_{\text {UvLO }}$	UVLO Threshold	V_{CC} Rising	3.5	3.8	4.1	V
VUVLO_hYST	UVLO Hysteresis			0.4		V
$\mathrm{t}_{\text {D_POR }}$	POR Delay to Enable IC	V_{CC} UVLO Rising to Internal PWM Enable			20	$\mu \mathrm{s}$
EN Input						
$\mathrm{V}_{\mathrm{H}+\mathrm{EN}}$	High-Level Input Voltage		2.0			V
$\mathrm{V}_{\text {IL_EN }}$	Low-Level Input Voltage				0.8	V
RPLD_EN	Pull-Down Resistance			250		k Ω
tpd_ENL	EN LOW Propagation Delay	PWM=GND, EN Going LOW to GL Going LOW		25		ns
$\mathrm{tpD}_{\text {_ }} \mathrm{NNH}$	EN HIGH Propagation Delay	PWM=GND, EN Going HIGH to GL Going HIGH		25		ns
ZCD\# Input						
$\mathrm{V}_{\text {IH_ZCD\# }}$	High-Level Input Voltage		2.0			V
$\mathrm{V}_{\text {IL_ZCD\# }}$	Low-Level Input Voltage				0.8	V
IPLU_ZCD\#	Pull-Up Current			10		$\mu \mathrm{A}$
tpd_ZLGLL	ZCD\# LOW Propagation Delay	PWM=GND, ZCD\# Going LOW to GL Going LOW (assume $I_{L}<=0$)		10		ns
tpd_ZHGLH	ZCD\# HIGH Propagation Delay	PWM=GND, ZCD\# Going HIGH to GL Going HIGH		10		ns
PWM Input						
Rup_pwm	Pull-Up Impedance	Typical Values: $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{CC}}=\mathrm{PV} \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$, Min. / Max. Values: $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{CC}}=\mathrm{P} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$		10		$\mathrm{k} \Omega$
R ${ }_{\text {DN_PWM }}$	Pull-Down Impedance			10		k ת
$\mathrm{V}_{\text {IH_PWM }}$	PWM High Level Voltage		3.8			V
$\mathrm{V}_{\text {TRI_Window }}$	3-State Window		1.2		3.1	V
$\mathrm{V}_{\text {IL_PWM }}$	PWM Low Level Voltage				0.8	V
to_hold-off	3-State Shut-Off Time			90	130	ns
$\mathrm{V}_{\text {HIZ_PWM }}$	3-State Open Voltage		2.1	2.5	2.9	V
Minimum Controllable On-Time						
$\mathrm{tmin} \mathrm{Prwmon}^{\text {den }}$	PWM Minimum Controllable OnTime	Minimum PWM HIGH Pulse Required for SW Node to Switch from GND to VIN	30			ns

Forced Minimum GL HIGH Time

| t min_GL_HIGH | Forced Minimum GL HIGH | Minimum GL HIGH Time when LOW
 VBOOT-Sw detected and PWM
 LOW $=<100 \mathrm{~ns}$ | 100 | ns |
| :--- | :--- | :--- | :--- | :--- | :--- |

PWM Propagation Delays \& Dead Times ($\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{PV} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{sw}}=1 \mathrm{MHz}$, lout $=20 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

tPD_PHGLL	PWM HIGH Propagation Delay	PWM Going HIGH to GL Going LOW, 	15	ns
tPD_PLGHL	PWM LOW Propagation Delay	PWM Going LOW to $\mathrm{GH}^{(6)}$ Going LOW, VIL_pwm to 90% GH	30	ns
tPD_PHGHH	PWM HIGH Propagation Delay (ZCD\# Held LOW)	PWM Going HIGH to GH Going HIGH, $\mathrm{V}_{\mathrm{IH}_{-} \text {рwм }}$ to 10% GH (ZCD\#=LOW, $\mathrm{I}_{\mathrm{L}}=0$, Assumes DCM)	10	ns

Continued on the following page...

Electrical Characteristics

Typical value is under $\mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{PV} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J=+} 25^{\circ} \mathrm{C}$ unless otherwise noted. Minimum / Maximum values are under $\mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{~V}_{C C}=P V_{C C}=5 \mathrm{~V} \pm 10 \%$ and $T_{J}=T_{A}=-40 \sim 125^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
to_deadon	LS Off to HS On Dead Time	GL Going LOW to GH Going HIGH, 10\% GL to 10% GH, PWM Transition LOW to HIGH - See Figure 27		10		ns
to_deadoff	HS Off to LS On Dead Time	GH Going LOW to GL Going HIGH, 10\% GH to 10% GL, PWM Transition HIGH to LOW - See Figure 27		5		ns
tr_GH_20A	GH Rise Time under 20 A lout	10\% GH to $90 \% \mathrm{GH}, \mathrm{I}_{\text {out }}=20 \mathrm{~A}$		9		ns
$\mathrm{t}_{\text {_GH }}$-20A	GH Fall Time under 20 A Iout	90\% GH to 10\% GH, Iout=20 A		9		ns
$\mathrm{t}_{\text {R_GL_20A }}$	GL Rise Time under 20 A lout	10\% GL to 90\% GL, Iout=20 A		9		ns
$\mathrm{t}_{\text {_GL_20A }}$	GL Fall Time under 20 A lout	90\% GL to 10\% GL, Iout=20 A		6		ns
tPD_TSGHH	Exiting 3-State Propagation Delay	PWM (from 3-State) Going HIGH to GH Going HIGH, $\mathrm{V}_{\text {IH_pwi }}$ to 10% GH			45	ns
tpd_TSGLH	Exiting 3-State Propagation Delay	PWM (from 3-State) Going LOW to GL Going HIGH, VIL_pwm to $10 \% \mathrm{GL}$			45	ns
High-Side Driver (HDRV, $\mathrm{V}_{\mathrm{cc}}=\mathrm{PV} \mathrm{Cc}=5 \mathrm{~V}$)						
Rsource_gh	Output Impedance, Sourcing	Source Current=100 mA		0.68		Ω
$\mathrm{R}_{\text {SINK_GH }}$	Output Impedance, Sinking	Sink Current=100 mA		0.9		Ω
$\mathrm{t}_{\text {R_GH }}$	GH Rise Time	$10 \% \mathrm{GH}$ to $90 \% \mathrm{GH}, \mathrm{C}_{\text {LOAD }}=1.3 \mathrm{nF}$		4		ns
$\mathrm{t}_{\text {_GH }}$	GH Fall Time	90\% GH to 10\% GH, C LOAD $=1.3 \mathrm{nF}$		3		ns

Weak Low-Side Driver (LDRV2 Only under CCM2 Mode Operation, $\mathrm{V}_{\mathrm{cc}}=\mathrm{PV}$ cc $=5 \mathrm{~V}$)

R $_{\text {SourCe_GL }}$	Output Impedance, Sourcing	Source Current=100 mA	0.82		Ω	
$\mathrm{I}_{\text {Source_GL }}$	Output Sourcing Peak Current	GL=2.5 V		2		A
$\mathrm{R}_{\text {SINK_GL }}$	Output Impedance, Sinking	Sink Current=100 mA		0.86		Ω
$\mathrm{I}_{\text {SIIK_GL }}$	Output Sinking Peak Current	GL=2.5 V		2		A

Low-Side Driver (Paralleled LDRV1 + LDRV2 under CCM1 Mode Operation, Vcc = PV cc = 5 V)

R ${ }_{\text {Source_gl }}$	Output Impedance, Sourcing	Source Current=100 mA	0.47	Ω
Isource_Gl	Output Sourcing Peak Current	GL=2.5 V	4	A
$\mathrm{R}_{\text {SINK_GL }}$	Output Impedance, Sinking	Sink Current=100 mA	0.29	Ω
$\mathrm{I}_{\text {SINK_GL }}$	Output Sinking Peak Current	GL=2.5 V	7	A
$t_{\text {R_GL }}$	GL Rise Time	10\% GL to 90\% GL, CLOAD $=7.0 \mathrm{nF}$	9	ns
$t_{\text {f_GL }}$	GL Fall Time	90\% GL to $10 \% \mathrm{GL}, \mathrm{C}_{\text {LOAD }}=7.0 \mathrm{nF}$	6	ns

Thermal Monitor Current

$\mathrm{I}_{\text {TMON_25 }}$	Thermal Monitor Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	39.3	40.2	41.0	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {TMON_150 }}$	Thermal Monitor Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$		58		$\mu \mathrm{~A}$
$\mathrm{I}_{\text {TMON_SLOPE }}$	Thermal Monitor Current Slope	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25 \sim 150^{\circ} \mathrm{C}$		0.144		$\mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$

Thermal Monitor Voltage

$\mathrm{V}_{\text {TM }}{ }^{\text {a }}$	Thermal Monitor Voltage	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=125 \sim 150^{\circ} \mathrm{C}, \mathrm{R}_{\text {TMON }}=25 \mathrm{k} \Omega$	1.39		1.62	V
Catastrophic Fault (SW Monitor)						
$\mathrm{V}_{\text {Sw_mon }}$	SW Monitor Reference Voltage			1.3	2	V
to_fault	Propagation Delay to Pull EN / FAULT\# Signal = LOW			20		ns

Boot Diode

V_{F}	Forward-Voltage Drop	$\mathrm{I}_{\mathrm{F}=10 \mathrm{~mA}}$		0.4		V
$\mathrm{~V}_{\mathrm{R}}$	Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	30			V

Note

6. $\mathrm{GH}=$ Gate High, internal gate pin of the high-side MOSFET

Typical Performance Characteristics

Test Conditions: $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{P} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{OUT}}=1.8 \mathrm{~V}$, Lout $=250 \mathrm{nH}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and natural convection cooling, unless otherwise noted.

Figure 4. Safe Operating Area

Figure 6. Power Loss vs. Switching Frequency

Figure 8. Power Loss vs. Driver Supply Voltage

Figure 5. Power Loss vs. Output Current

Figure 7. Power Loss vs. Input Voltage

Figure 9. Power Loss vs. Output Voltage

Typical Performance Characteristics

Test Conditions: $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{P} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUt}}=1.8 \mathrm{~V}$, Lout $=250 \mathrm{nH}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and natural convection cooling, unless otherwise noted.

Figure 10. Power Loss vs. Output Inductor

Figure 11. Driver Supply Current vs. Switching Frequency

Figure 12. Driver Supply Current vs. Driver Supply Figure 13. Driver Supply Current vs. Output Current Voltage

Figure 14. UVLO Threshold vs. Temperature

Figure 15. PWM Threshold vs. Driver Supply Voltage

Typical Performance Characteristics

Test Conditions: $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{PV} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.8 \mathrm{~V}$, LOUT$=250 \mathrm{nH}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and natural convection cooling, unless otherwise noted.

Figure 16. PWM Threshold vs. Temperature

Figure 18. ZCD\# Threshold vs. Temperature

Figure 20. EN Threshold vs. Driver Supply Voltage

Figure 17. ZCD\# Threshold vs. Driver Supply Voltage

Figure 19. ZCD\# Pull-Up Current vs. Temperature

Figure 21. EN Threshold vs. Temperature

Typical Performance Characteristics

Test Conditions: $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{P} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{OUT}}=1.8 \mathrm{~V}$, Lout $=250 \mathrm{nH}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and natural convection cooling, unless otherwise noted.

Figure 22. EN Pull-Down Current vs. Temperature

Figure 24. Driver Shutdown Current vs. Temperature

Figure 23. Boot Diode Forward Voltage vs. Temperature

Figure 25. Driver Quiescent Current vs. Temperature

Functional Description

The SPS FDMF5826DC is a driver-plus-MOSFET module optimized for the synchronous buck converter topology. A PWM input signal is required to properly drive the high-side and the low-side MOSFETs. The part is capable of driving speed up to 1.5 MHz .

Power-On Reset (POR)

The PWM input stage should incorporate a POR feature to ensure both LDRV and HDRV are forced inactive (LDRV $=\mathrm{HDRV}=0$) until UVLO $>\sim 3.8 \mathrm{~V}$ (rising threshold). After all gate drive blocks are fully powered on and have finished the startup sequence, the internal driver IC EN_PWM signal is released HIGH, enabling the driver outputs. Once the driver POR has finished ($<20 \mu \mathrm{~s}$ maximum), the driver follows the state of the PWM signal (it is assumed that at startup the controller is either in a high-impedance state or forcing the PWM signal to be within the driver 3-state window).

Three conditions below must be supported for normal startup / power-up.

- $\quad \mathrm{V}_{\mathrm{CC}}$ rises to 5 V , then EN goes HIGH;
- EN pin is tied to the VCC pin;
- EN is commanded HIGH prior to $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ reaching the UVLO rising threshold.
The POR method is to increase the V_{cc} over than UVLO $>$ rising threshold and EN $=$ HIGH.

Under-Voltage Lockout (UVLO)

UVLO is performed on V_{CC} only, not on $\mathrm{PV}_{\mathrm{CC}}$ or V_{IN}. When the EN is set HIGH and V_{CC} is rising over the UVLO threshold level (3.8 V), the part starts switching operation after a maximum $20 \mu \mathrm{~s}$ POR delay. The delay is implemented to ensure the internal circuitry is biased, stable, and ready to operate. Two VCC pins are provided: PVCC and VCC. The gate driver circuitry is powered from the PVCC rail. The user connects PVCC to VCC through a low-pass R-C filter. This provides a filtered 5 V bias to the analog circuitry on the IC.

Figure 26. UVLO on VCC

EN / FAULT\# (Enable / Fault Flag)

The driver can be disabled by pulling the EN / FAULT\# pin LOW (EN < VIL_EN), which holds both GL and GH LOW regardless of the PWM input state. The driver can be enabled by raising the EN / FAULT\# pin voltage HIGH (EN > $\mathrm{V}_{\mathrm{IH} \text { _en }}$). The driver IC has less than 2 mA shutdown current when it is disabled. Once the driver is re-enabled, it takes a maximum of 25 ns startup time.

EN / FAULT\# pin is an open-drain output for fault flag with an internal $250 \mathrm{k} \Omega$ pull-down resistor. Logic HIGH signal from PWM controller or a ~ $10 \mathrm{k} \Omega$ external pull-up resistor from EN / FAULT\# pin to VCC is required to start driver operation.
Table 1. UVLO and Enable Logic

UVLO	EN	Driver State
0	X	Disabled (GH \& GL = 0)
1	0	Disabled (GH \& GL = 0)
1	1	Enabled (see Table 2)
1	Open	Disabled (GH \& GL = 0)

The EN / FAULT\# pin has two functions: enabling / disabling driver and fault flag. The fault flag signal is active LOW. When the driver detects a fault condition during operation, it turns on the open-drain on the EN / FAULT\# pin and the pin voltage is pulled LOW. The fault condition is:

- High-side MOSFET false turn-on or VIN ~ SW short during low-side MOSFET turn on;
When the driver detects a fault condition and disables itself, a POR event on VCC is required to restart the driver operation.

3-State PWM Input

The FDMF5826DC incorporates a 3-state 5 V PWM input gate drive design. The 3 -state gate drive has both logic HIGH and LOW levels, along with a 3 -state shutdown window. When the PWM input signal enters and remains within the 3 -state window for a defined hold-off time (td_hold-off), both GL and GH are pulled LOW. This feature enables the gate drive to shut down both the high-side and the low-side MOSFETs to support features such as phase shedding, a common feature on multi-phase voltage regulators.
Table 2. EN / PWM / 3-State / ZCD\# Logic States

EN	PWM	ZCD\#	GH	GL
0	X	X	0	0
1	3-State	X	0	0
1	0	0	0	$1(\mathrm{IL}>0), 0(\mathrm{IL}<0)$
1	1	0	1	0
1	0	1	0	1
1	1	1	1	0

$\mathrm{t}_{\text {FALL_GL }}=90 \%$ GL to $10 \% \mathrm{GL}$
$t_{D \text { deadon }}=$ LS Off to HS On Dead Time, $10 \% \mathrm{GL}$ to $\mathrm{V}_{\text {Boot-gnd }}<=\mathrm{PV} \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {F dboot }}-1 \mathrm{~V}$ or BOOT-GND dip start point

$t_{\text {tp_plghl }}=$ PWM LO to GH LO, $\mathrm{V}_{\text {IL_PWM }}$ to 90% GH or BOOT-GND decrease start point, $\mathrm{t}_{\text {pd_PLGLH }}-\mathrm{t}_{\text {d_deadoff }}-\mathrm{t}_{\text {FALL_GH }}$ $\mathrm{t}_{\text {FALL_GH }}=90 \%$ GH to 10% GH, BOOT-GND decrease start point to $90 \% \mathrm{~V}_{\text {Sw }}$ or GL dip start point $t_{\text {D_d }}$ deadoff $=H S$ Off to LS On Dead Time, $90 \% \mathrm{~V}_{\text {sw }}$ or GL dip start point to $10 \% \mathrm{GL}$
$\mathrm{t}_{\text {RISE_GL }}=10 \% \mathrm{GL}$ to $90 \% \mathrm{GL}$
tpd_PLGLH $=$ PWM LO to GL HI, VIL_PwM to 10% GL
Figure 27. PWM Timing Diagram

Figure 28. PWM Threshold Definition

Notes:

7. The timing diagram in Figure 28 assumes very slow ramp on PWM.
8. Slow ramp of PWM implies the PWM signal remains within the 3 -state window for a time $\ggg t_{\text {D_hold-off. }}$
9. $\quad \mathrm{V}_{\text {TRI_HI }}=\mathrm{PWM}$ trip level to enter 3-state on PWM falling edge.
10. $\mathrm{V}_{\text {TRI_Lo }}=$ PWM trip level to enter 3-state on PWM rising edge.
11. V_{IH} _PWM $=\mathrm{PWM}$ trip level to exit 3 -state on PWM rising edge and enter the PWM HIGH logic state.
12. $\mathrm{V}_{\text {IL_P }}$ PWM $=$ PWM trip level to exit 3-state on PWM falling edge and enter the PWM LOW logic state.

Power Sequence

SPS FDMF5826DC requires four (4) input signals to conduct normal switching operation: $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{CC}} / \mathrm{PV}_{\mathrm{Cc}}$, PWM, and EN. PWM should not be applied before V_{cc} and the amplitude of PWM should not be higher than $\mathrm{V}_{\text {cc }}$. All other combinations of their power sequences are allowed. The below example of a power sequence is for a reference application design:

- From no input signals

$$
\begin{aligned}
& ->V_{I N} \text { On: Typical } 12 \mathrm{~V}_{\mathrm{DC}} \\
& \text {-> } \mathrm{V}_{\mathrm{CC}} \text { / PV } \mathrm{V}_{\mathrm{CC}} \text { On: Typical } 5 \mathrm{~V}_{\mathrm{DC}} \\
& \text {-> EN HIGH: Typical } 5 \mathrm{~V}_{\mathrm{DC}} \\
& \text {-> PWM Signaling: } 5 \mathrm{~V} \text { HIGH / } 0 \mathrm{~V} \text { LOW }
\end{aligned}
$$

The VIN pins are tied to the system main DC power rail. PVCC and VCC pins are tied together to supply gate driving and logic circuit powers from the system V_{cc} rail. Or the PVCC pin can be directly tied to the system V_{CC} rail, and the VCC pin is powered by PVCC pin through a filter resistor located between PVCC pin and VCC pin. The filter resistor reduces switching noise impact from $P V_{c c}$ to $V_{c c}$.
The EN pin can be tied to the V_{CC} rail with an external pull-up resistor and it will maintain HIGH once the V_{cc} rail turns on. Or the EN pin can be directly tied to the PWM controller for other purposes.

High-Side Driver

The high-side driver (HDRV) is designed to drive a floating N-channel MOSFET (Q1). The bias voltage for the high-side driver is developed by a bootstrap supply circuit, consisting of the internal Schottky diode and external bootstrap capacitor ($\mathrm{C}_{\text {воот }}$). During startup, the SW node is held at PGND, allowing $\mathrm{C}_{\text {воот }}$ to charge to PVCC through the internal bootstrap diode. When the PWM input goes HIGH, HDRV begins to charge the gate of the high-side MOSFET (internal GH pin). During this transition, the charge is removed from the $\mathrm{C}_{\text {воот }}$ and delivered to the gate of Q1. As Q1 turns on, SW rises to V_{IN}, forcing the BOOT pin to $\mathrm{V}_{\mathrm{IN}}+\mathrm{V}_{\text {BOot }}$, which provides sufficient $V_{G S}$ enhancement for Q . To complete the switching cycle, Q1 is turned off by pulling HDRV to SW. С Coоt 0 is then recharged to PVCC when the SW falls to PGND. HDRV output is in phase with the PWM input. The high-side gate is held LOW when the driver is disabled or the PWM signal is held within the 3 -state window for longer than the 3 -state hold-off time, to_hold-off.

Low-Side Driver

The low-side driver (LDRV) is designed to drive the gate-source of a ground-referenced low $R_{D S(O N)}$, N-channel MOSFET (Q2). The bias for LDRV is internally connected between the PVCC and AGND. When the driver is enabled, the driver output is 180° out of phase with the PWM input. When the driver is disabled ($\mathrm{EN}=0 \mathrm{~V}$), LDRV is held LOW.

Continuous Current Mode 2 (CCM2) Operation

A main feature of the low-side driver design in SPS FMDF5826DC is the ability to control the part of the low-side gate driver upon detection of negative inductor current, called CCM2 operation. This is accomplished by using the ZCD comparator signal.

The primary reason for scaling back on the drive strength is to limit the peak V_{DS} stress when the lowside MOSFET hard-switches inductor current. This peak $V_{D S}$ stress has been an issue with applications with large amounts of load transient and fast and wide output voltage regulation.
The MOSFET gate driver in SPS FDMF5826DC operates in one of three modes, described below.

Continuous Current Mode 1 (CCM1) with Positive Inductor Current

In this mode, inductor current is always flowing towards the output capacitor, typical of a heavily loaded power stage. The high-side MOSFET turns on with the lowside body diode conducting inductor current and SW is approximately a V_{F} below ground, meaning hardswitched turn-on and turn-off of the high-side MOSFET.

Discontinuous Current Mode (DCM)

Typical of lightly loaded power stage; the high-side MOSFET turns on with zero inductor current, ramps the inductor current, then returns to zero every switching cycle. When the high-side MOSFET turns on under DCM operation, the SW node may be at any voltage from a V_{F} below ground to a V_{F} above $V_{I N}$. This is because after the low-side MOSFET turns off, the SW node capacitance resonates with the inductor current.
The level shifter in driver IC should be able to turn on the high-side MOSFET regardless of the SW node voltage. In this case, the high-side MOSFET turns off a positive current.
During this mode, both LDRV1 and LDRV2 operate in parallel and the low-side gate driver pull-up and pulldown resistors are operating at full strength.

Continuous Current Mode 2 (CCM2) with Negative Inductor Current

This mode is typical in a synchronous buck converter pulling energy from the output capacitors and delivering the energy to the input capacitors (Boost Mode). In this mode, the inductor current is negative (meaning towards the MOSFETs) when the low-side MOSFET is turned off (may be negative when the high-side MOSFET turns on as well). This situation causes the low-side MOSFET to hard switch while the high-side MOSFET acts as a synchronous rectifier (temporarily operated in synchronous Boost Mode).

During this mode, only the "weak" LDRV2 is used for low-side MOSFET turn-on and turn-off. The intention is to slow down the low-side MOSFET switching speed when it is hard switching to reduce peak $V_{D S}$ stress.

Dead-Times in CCM1 / DCM / CCM2

The driver IC design ensures minimum MOSFET dead times, while eliminating potential shoot-through (crossconduction) currents. To ensure optimal module efficiency, body diode conduction times must be reduced to the low nano-second range during CCM1 and DCM operation. CCM2 alters the gate drive impedance while operating the power MOSFETs in a different mode versus CCM1 / DCM. Altered dead-time operation must be considered.

Low-Side MOSFET Off to High-Side MOSFET On Dead Time in CCM1 / DCM

To prevent overlap during the low-side MOSFET off to high-side MOSFET on switching transition, adaptive circuitry monitors the voltage at the GL pin. When the PWM signal goes HIGH, GL goes LOW after a propagation delay (tPD_PHGLL). Once the GL pin is discharged below $\sim 1-2 \mathrm{~V}, \mathrm{GH}$ is pulled HIGH after an adaptive delay, to_DEADON.
Some situations where the ZCD\# rising-edge signal leads the PWM rising edge by tens of nanoseconds, can cause GH and GL overlap. This event can occur when the PWM controller sends PWM and ZCD\# signals that lead, lag, or are synchronized. To avoid this phenomenon, a secondary fixed propagation delay ($\mathrm{t}_{\text {FD_ON1 }}$) is added to ensure there is always a minimum delay between low-side MOSFET off to high-side MOSFET on.

Low-Side MOSFET Off to High-Side MOSFET On Dead Time in CCM2

As noted in the CCM2 Operation section, the low-side driver strength is scale-able upon detection of CCM2. CCM2 feature slows the charge and discharge of the low-side MOSFET gate to minimize peak switching voltage overshoots during low-side MOSFET hard-
switching (negative inductor current). To avoid crossconduction, the slowing of the low-side gate also requires an adjustment (increase) of the dead time between low-side MOSFET off to high-side MOSFET on. A fairly long fixed dead time ($\mathrm{t}_{\mathrm{FD} \text { _ON2 }}$) is implemented to ensure there is no cross conduction during this CCM2 operation.

High-Side MOSFET Off to Low-Side MOSFET On Dead Time in CCM1 / DCM

To get very short dead time during high-side MOSFET off to low-side MOSFET on transition, a fixed-dead-time method is implemented in the SPS gate driver. The fixed-dead-time circuitry monitors the internal HS signal and adds a fixed delay long enough to gate on GL after a desired $t_{\text {D_DEADOFF }}\left(\sim 5 \mathrm{~ns}, \mathrm{t}_{\text {D_DEADOFF }}=\mathrm{t}_{\text {FD_OFF1 }}\right)$, regardless of SW node state.

Exiting 3-State Condition

When exiting a valid 3 -state condition, the gate driver of the FDMF5826DC follows the PWM input command. If the PWM input goes from 3-state to LOW, the low-side MOSFET is turned on. If the PWM input goes from 3state to HIGH, the high-side MOSFET is turned on. This is illustrated in Figure 29 below.

Figure 29. PWM HIGH / LOW / 3-State Timing Diagram

Exiting 3-State with Low BOOT-SW Voltage

The SPS module is used in multi-phase VR topologies requiring the module to wait in 3 -state condition for an indefinite time. These long idle times can bleed the boot capacitor down until eventual clamping occurs based on $P V_{\text {CC }}$ and $V_{\text {out. }}$ Low BOOT-SW can cause increased propagation delays in the level-shift circuit as well as all HDRV floating circuitry, which is biased from the BOOT-SW rail. Another issue with a depleted BOOT-SW capacitor voltage is the voltage applied to the HS MOSFET gate during turn-on. A low BOOT-SW voltage results in a very weak HS gate drive, hence, much larger HS R $\mathrm{RS}_{(0 \mathrm{ON})}$ and increased risk for unreliable operation since the HS MOSFET may not turn-on if BOOT-SW falls too low.

To address this issue, the SPS monitors for a low BOOT-SW voltage when the module is in 3 -state condition. When the module exits 3 -state condition with a low BOOT-SW voltage, a 100 ns minimum GL on time is output regardless of the PWM input. This ensures the boot capacitor is adequately charged to a safe operating level and has minimal impact on transient response of the system. Scenarios of exiting 3 -state condition are listed below.

- If the part exits 3 -state with a low BOOT-SW voltage condition and the controller commands PWM=HIGH, the SPS outputs a 100 ns GL pulse and follows the PWM=HIGH command (see Figure 30).
- If the part exits 3-state with a low BOOT-SW voltage condition and the controller commands PWM=LOW for 100 ns or more, the SPS follows the PWM input. If PWM=LOW for less than 100 ns , GL remains on for 100 ns then follows the PWM input (see Figure 31 and Figure 32).
- If no low BOOT-SW condition is detected, the SPS follows the PWM command when exiting 3 -state (see Figure 33).
The SPS momentarily stays in an adaptive dead time mode when exiting 3 -state condition or at initial powerup. This adaptive dead time mode lasts for no more than two (2) consecutive switching cycles, giving the boot capacitor ample time to recharge to a safe level. The module switches back to fixed dead time control for maximum efficiency.

Figure 30. Low BOOT-SW Voltage Detected and PWM from 3-State to HIGH

Figure 31. Low BOOT-SW Voltage Detected and PWM from 3-State to LOW for more than 100 ns

Figure 32. Low BOOT-SW voltage Detected and PWM from 3-State to LOW for Less than 100 ns

Low BOOT-SW voltage NOT detected
Figure 33. Low BOOT-SW Voltage NOT Detected and PWM from 3-State to HIGH or LOW

Zero Cross Detect (ZCD) Operation

The ZCD control block houses the circuitry that determines when the inductor current reverses direction and controls when to turn off the low-side MOSFET. A low offset comparator monitors the SW-to-PGND voltage of the low-side MOSFET during the LS MOSFET on-time. When the sensed voltage switches polarity from negative to positive, the comparator changes state and reverse current has been detected. This comparator offset must sense the negative V_{sw}
within a 0.5 mV worst-case range. The negative offset is to ensure the inductor current never reverses; some small body-diode conduction is preferable to having negative current.

The comparator is switched on after the rising edge of the low-side gate drive and turned off by the signal at the input to the low-side gate driver. In this way, the zero-current comparator is connected with a break-before-make connection, allowing the comparator to be designed with low-voltage transistors.

Figure 34. ZCD\# \& PWM Timing Diagram

Temperature Monitor (TMON)

The FDMF5826DC provides a temperature monitor (TMON) to warn of over-temperature conditions. The gate driver uses the TMON pin to source an analog current proportional to absolute temperature (PTAT). It is expected that the analog current will be used with a properly chosen external resistor to AGND to develop a voltage across TMON ($\mathrm{V}_{\text {TMON }}$) proportional to the temperature. A filter capacitance may be needed to minimize noise spikes in the analog current, Itmon. Noise spikes are generated from power MOSFET switching $\mathrm{dv} / \mathrm{dt}$ and di / dt coupling back into the driver VCC pin.
The TMON pin needs a pull-down resistor ($\mathrm{R}_{\text {Tмом }}$) and filter capacitor ($\mathrm{C}_{\text {TMON }}$) to AGND. With $25 \mathrm{k} \Omega \mathrm{R}_{\text {TMON }}$ and $0.1 \mu \mathrm{~F}$ Ctmon, the TMON voltage is around 1 V at $25^{\circ} \mathrm{C}$ of gate driver T_{J}, and 1.5 V when the driver temperature reaches $150^{\circ} \mathrm{C}$. The $\mathrm{V}_{\text {TMON }}$ signal can be connected to PWM controller or MCU in system to indicate the thermal status of the gate driver. Figure 35 shows gate
driver temperature versus TMON pin voltage with $25 \mathrm{k} \Omega$ $\mathrm{R}_{\text {tMon }}$ and $0.1 \mu \mathrm{~F} \mathrm{C}_{\text {tMon }}$.

Figure 35. Gate Driver $\mathrm{T}_{\mathbf{J}}$ vs. $\mathrm{V}_{\text {TMON }}$
The TMON voltage is defined by following equation:

$$
\begin{gathered}
\mathrm{V}_{\text {TMON }}[\mathrm{mV}]=\mathrm{I}_{\text {TMON }}[\mu \mathrm{A}] \times \mathrm{R}_{\text {TMON }}[\mathrm{k} \Omega] \\
=\left(\frac{18 \mathrm{uA}}{125^{\circ} \mathrm{C}} \times{\text { Driver } \left.\mathrm{T}_{\mathrm{J}}{ }^{\circ} \mathrm{C}+36.4 \mu \mathrm{~A}\right)}^{\times \mathrm{R}_{\text {TMON }}[\mathrm{k} \Omega]}\right.
\end{gathered}
$$

For example, if a $2 \mathrm{~V} \mathrm{~V}_{\text {TMON }}$ is required when the driver T_{J} reaches $150^{\circ} \mathrm{C}$, the calculated $R_{\text {TMON }}$ value is $34.5 \mathrm{k} \Omega$. Figure 36 shows the relationship among $\mathrm{V}_{\text {TMON }}, \mathrm{R}_{\text {TMON }}$ and driver T_{J} based on Equation (1).

Figure 36. $\quad V_{\text {tmon }}$ vs. $R_{\text {TMON }}$

Catastrophic Fault

SPS FDMF5826DC includes a catastrophic fault feature. If a HS MOSFET short is detected, the driver internally pulls the EN / FAULT\# pin LOW and shuts down the SPS driver. The intention is to implement a basic circuit to test the HS MOSFET short by monitoring LDRV and the state of SW node.

If a HS short fault is detected, the SPS module clocks the fault latch shutting down the module. The module requires a VCC POR event to restart.

Application Information

Decoupling Capacitor for PVCC \& VCC

For the supply inputs (PVCC and VCC pins), local decoupling capacitors are required to supply the peak driving current and to reduce noise during switching operation. Use at least $0.68 \sim 1 \mu \mathrm{~F} / 0402 \sim 0603$ / X5R ~ X7R multi-layer ceramic capacitors for both power rails. Keep these capacitors close to the PVCC and VCC pins and PGND and AGND copper planes. If they need to be located on the bottom side of board, put through-hole vias on each pads of the decoupling capacitors to connect the capacitor pads on bottom with PVCC and VCC pins on top.

The supply voltage range on PVCC and VCC is 4.5 V ~ 5.5 V , typically 5 V for normal applications.

R-C Filter on VCC

The PVCC pin provides power to the gate drive of the high-side and low-side power MOSFETs. In most cases, PVCC can be connected directly to VCC, which is the pin that provides power to the analog and logic blocks of the driver. To avoid switching noise injection from PVCC into VCC, a filter resistor can be inserted between PVCC and VCC decoupling capacitors.

Recommended filter resistor value range is $0 \sim 10 \Omega$, typically 0Ω for most applications.

Bootstrap Circuit

The bootstrap circuit uses a charge storage capacitor (Своот). A bootstrap capacitor of $0.1 \sim 0.22 \mu \mathrm{~F} / 0402$ ~ 0603 / X5R ~ X7R is usually appropriate for most switching applications. A series bootstrap resistor may be needed for specific applications to lower high-side MOSFET switching speed. The boot resistor is required when the SPS is switching above $15 \mathrm{~V} \mathrm{~V}_{\mathbb{I}}$; when it is effective at controlling $\mathrm{V}_{\text {SW }}$ overshoot. $\mathrm{R}_{\text {BOOT }}$ value from zero to 6Ω is typically recommended to reduce excessive voltage spike and ringing on the SW node. A higher $\mathrm{R}_{\text {Bоot }}$ value can cause lower efficiency due to high switching loss of high-side MOSFET.

Do not add a capacitor or resistor between the BOOT pin and GND.

EN / FAULT\# (Input / Output)

The driver in SPS is enabled by pulling the EN pin HIGH. The EN pin has internal $250 \mathrm{k} \Omega$ pull-down resistor, so it needs to be pulled-up to V_{cc} with an external resistor or connected to the controller or system to follow up the command from them. If the EN pin is floated, it cannot turn on the driver.
The fault flag LOW signal is asserted on the EN / FAULT\# pin when a high-side MOSFET fault occurs. Then the driver shuts down.

The typical pull-up resistor value on EN ~ VCC is $10 \mathrm{k} \Omega$. Do not add a noise filter capacitor on the EN pin.

PWM (Input)

The PWM pin recognizes three different logic levels from PWM controller: HIGH, LOW, and 3-state. When the PWM pin receives a HIGH command, the gate driver turns on the high-side MOSFET. When the PWM pin receives a LOW command, the gate driver turns on the low-side MOSFET. When the PWM pin receives a voltage signal inside of the 3-state window (VTRI_Window) and exceeds the 3 -state hold-off time, the gate driver turns off both high-side and low-side MOSFETs. To recognize the high-impedance 3 -state signal from the controller, the PWM pin has an internal resistor divider from VCC to PWM to AGND. The resistor divider sets a voltage level on the PWM pin inside the 3-state window when the PWM signal from the controller is high-impedance.

ZCD\# (Input)

When the ZCD\# pin sets HIGH, the ZCD function is disabled and high-side and low-side MOSFETs switch in CCM (or FCCM, Forced CCM) by PWM signal. When the ZCD\# pin is LOW, the low-side MOSFET turns off when the SPS driver detects negative inductor current during the low-side MOSFET turn-on period. This ZCD feature allows higher converter efficiency under lightload condition and PFM / DCM operation.

The ZCD\# pin has an internal current source from VCC, so it may not need an external pull-up resistor. Once V_{CC} is supplied and the driver is enabled, the ZCD\# pin holds logic HIGH without external components and the driver operates switching in CCM or FCCM. The ZCD\# pin can be grounded for automatic diode emulation in DCM by the SPS itself, or it can be connected to the controller or system to follow the command from them.

The typical pull-up resistor value on ZCD\# ~ VCC is $10 \mathrm{k} \Omega$ for stable ZCD\# HIGH level. If not using the ZCD feature, tie the ZCD\# pin to VCC with a pull-up resistor. Do not add any noise filter capacitor on the ZCD\# pin.

TMON (Output)

During normal operation (no fault detected), the TMON pin sources an analog current proportional to the absolute temperature of the gate driver. With $25 \mathrm{k} \Omega$ Rtmon and $0.1 \mu \mathrm{~F} \mathrm{C}_{\text {tmon }}$ on TMON pin to AGND, it outputs 1 V at $25^{\circ} \mathrm{C}$ driver T_{J} and 1.5 V at $150^{\circ} \mathrm{C}$ driver T_{J}. The $\mathrm{C}_{\text {тмол }}$ is a filter capacitor to minimize switching noise injection onto the TMON pin. The TMON pin can be connected to a PWM controller or system controller and used to monitor the SPS module temperature.
If the TMON pin voltage exceeds 1.5 V with $25 \mathrm{k} \Omega$ $\mathrm{R}_{\text {TMON }}$, the driver temperature is over $150^{\circ} \mathrm{C}$. The $\mathrm{V}_{\text {tMon }}$ of 1.5 V can be adjusted by the $\mathrm{R}_{\text {TMON }}$ value and driver junction temperature so the user can monitor the preferable driver temperature with different $\mathrm{V}_{\text {TMON }}$ and Rtmon. Refer to the TMON section to define driver temperature, $V_{\text {TMON }}$ and $R_{\text {TMON }}$ values.

If not using the TMON feature, float the TMON pin.

Power Loss and Efficiency

Figure 38 shows an example diagram for power loss and efficiency measurement.

Power loss calculation and equation examples:

$\mathrm{P}_{\text {IN }}=\left(\mathrm{V}_{\text {IN }} * \mathrm{I}_{\text {IN }}\right)+\left(\mathrm{V}_{\mathrm{CC}} * \mathrm{I}_{\mathrm{CC}}\right)$	[W]
$\mathrm{P}_{\text {SW }}=\mathrm{V}_{\text {SW }} * \mathrm{l}_{\text {OUT }}$	[W]
Pout $=\mathrm{V}_{\text {OUT }}$ * Iout	[W]
$\mathrm{P}_{\text {loss_module }}=\mathrm{P}_{\text {IN }}-\mathrm{P}_{\text {Sw }}$	[W]
$\mathrm{P}_{\text {loss_total }}=\mathrm{P}_{\text {In }}-\mathrm{P}_{\text {Out }}$	[W]
EFFI ${ }_{\text {MOdULE }}=\left(\mathrm{P}_{\text {SW }} / \mathrm{P}_{\text {IN }}\right) * 100$	[\%]
EFFI ${ }_{\text {TOTAL }}=\left(\right.$ Pout $^{\text {/ }}$ PIN $) * 100$	[\%]

Figure 38. Power Loss and Efficiency Measurement Diagram

PCB Layout Guideline

Figure 39 through Figure 42 provide examples of singlephase and multi-phase layouts for the FDMF5826DC and critical components. All of the high-current paths; such as VIN, SW, VOUT, and GND coppers; should be short and wide for low parasitic inductance and resistance. This helps achieve a more stable and evenly distributed current flow, along with enhanced heat radiation and system performance.

Input ceramic bypass capacitors must be close to the VIN and PGND pins. This reduces the high-current power loop inductance and the input current ripple induced by the power MOSFET switching operation.

The SW copper trace serves two purposes. In addition to being the high-frequency current path from the SPS package to the output inductor, it serves as a heat sink for the low-side MOSFET. The trace should be short and wide enough to present a low-impedance path for the high-frequency, high-current flow between the SPS and the inductor. The short and wide trace minimizes electrical losses and SPS temperature rise. The SW node is a high-voltage and high-frequency switching node with high noise potential. Care should be taken to minimize coupling to adjacent traces. Since this copper trace acts as a heat sink for the low-side MOSFET, balance using the largest area possible to improve SPS cooling while maintaining acceptable noise emission.
An output inductor should be located close to the FDMF5826DC to minimize the power loss due to the SW copper trace. Care should also be taken so the inductor dissipation does not heat the SPS.
PowerTrench ${ }^{\circledR}$ MOSFETs are used in the output stage and are effective at minimizing ringing due to fast switching. In most cases, no RC snubber on SW node is required. If a snubber is used, it should be placed close to the SW and PGND pins. The resistor and capacitor of the snubber must be sized properly to not generate excessive heating due to high power dissipation.
Decoupling capacitors on PVCC, VCC, and BOOT capacitors should be placed as close as possible to the PVCC ~ PGND, VCC ~ AGND, and BOOT ~ PHASE pin pairs to ensure clean and stable power supply. Their routing traces should be wide and short to minimize parasitic PCB resistance and inductance.
The board layout should include a placeholder for smallvalue series boot resistor on BOOT ~ PHASE. The bootloop size, including series $\mathrm{R}_{\text {воот }}$ and $\mathrm{C}_{\text {воот }}$, should be as small as possible.

A boot resistor may be required when the SPS is operating above $15 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ and it is effective to control the high-side MOSFET turn-on slew rate and SW voltage overshoot. $\mathrm{R}_{\text {воот }}$ can improve noise operating margin in synchronous buck designs that may have noise issues due to ground bounce or high positive and negative V_{SW} ringing. Inserting a boot resistance lowers the SPS module efficiency. Efficiency versus switching noise must be considered. R R $_{\text {воо }}$ values from 0.5Ω to 6.0Ω are typically effective in reducing V_{Sw} overshoot.

The VIN and PGND pins handle large current transients with frequency components greater than 100 MHz . If possible, these pins should be connected directly to the VIN and board GND planes. The use of thermal relief traces in series with these pins is not recommended since this adds extra parasitic inductance to the power path. This added inductance in series with either the VIN or PGND pin degrades system noise immunity by increasing positive and negative V_{Sw} ringing.

PGND pad and pins should be connected to the GND copper plane with multiple vias for stable grounding. Poor grounding can create a noisy and transient offset voltage level between PGND and AGND. This could lead to faulty operation of gate driver and MOSFETs.

Ringing at the BOOT pin is most effectively controlled by close placement of the boot capacitor. Do not add any additional capacitors between BOOT to PGND. This may lead to excess current flow through the BOOT diode, causing high power dissipation.
The ZCD\# and EN pins have weak internal pull-up and pull-down current sources, respectively. These pins should not have any noise filter capacitors. Do not float these pins unless absolutely necessary.

Put multiple vias on the VIN and VOUT copper areas to interconnect top, inner, and bottom layers to evenly distribute current flow and heat conduction. Do not put too many vias on the SW copper to avoid extra parasitic inductance and noise on the switching waveform. As long as efficiency and thermal performance are acceptable, place only one SW node copper on the top layer and put no vias on the SW copper to minimize switch node parasitic noise. Vias should be relatively large and of reasonably low inductance. Critical highfrequency components; such as $\mathrm{R}_{\text {Bоот }}, \mathrm{C}_{\text {воот }}, \mathrm{RC}$ snubber, and bypass capacitors; should be located as close to the respective SPS module pins as possible on the top layer of the PCB. If this is not feasible, they can be placed on the board bottom side and their pins connected from bottom to top through a network of lowinductance vias.

PCB Layout Guideline (Continued)

Figure 39. Single-Phase Board Layout Example - Top View

Figure 40. Single-Phase Board Layout Example - Bottom View (Mirrored)

PCB Layout Guideline (Continued)

Figure 41. 6-Phase Board Layout Example with $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ Inductor - Top View

Figure 42. 6-Phase Board Layout Example with $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ Inductor - Bottom View (Mirrored)

TOP VIEW

FRONT VIEW

NOTES: UNLESS OTHERWISE SPECIFIED
A) DOES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-220, DATED MAY/2005.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
E) DRAWING FILE NAME: MKT-PQFN31AREV4
F) FAIRCHILDSEMICONDUCTOR

LAND PATTERN
RECOMMENDATION

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP:/WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

