MSCMC120AM02CT6LIAG

Datasheet

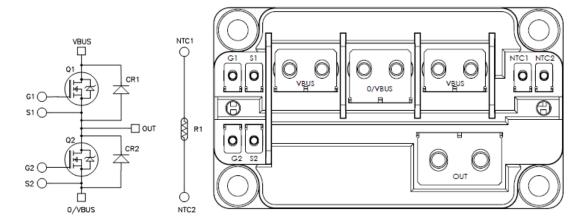
Very Low Stray Inductance Phase Leg SiC MOSFET Power Module

Final May 2018

Contents

1	Revi	sion History	1
	1.1	Revision A	1
2	Proc	duct Overview	2
	2.1	Features	2
	2.2	Benefits	2
	2.3	Applications	2
3	Elec	trical Specifications	3
	3.1	Absolute Maximum Ratings	3
		Electrical Performance	
	3.3	Typical Performance Curves	7
4	Pack	kage Specification	12
		Package Outline Drawing	

1 Revision History


The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision A

Revision A was published in May 2018. It is the first publication of this document.

2 Product Overview

2.1 Features

The following are key features of the MSCMC120AM02CT6LIAG device:

- Very low stray inductance
- Internal thermistor for temperature monitoring
- M4 and M5 power connectors
- M2.5 signals connectors
- AIN substrate for improved thermal performance

SiC Power MOSFET

- Low RDS(on)
- High temperature performance

SiC Schottky Diode

- Zero reverse recovery
- Zero forward recovery
- Temperature independent switching behavior
- Positive temperature coefficient on VF

2.2 Benefits

The following are benefits of the MSCMC120AM02CT6LIAG device:

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Low profile
- RoHS compliant

2.3 Applications

The MSCMC120AM02CT6LIAG device is designed for the following applications:

- Motor control
- *All ratings taken at T_J = 25 °C unless otherwise specified.
- *Caution: the devices are sensitive to elctrostatic discharge (ESD). Proper handling procedures should be followed.

3 Electrical Specifications

This section shows the electrical specifications for the MSCMC120AM02CT6LIAG device.

3.1 Absolute Maximum Ratings

The following table shows the SiC MOSFET absolute maximum ratings (per SiC MOSFET) for the MSCMC120AM02CT6LIAG device.

Table 1 • Absolute Maximum Ratings

Symbol	Parameter		Ratings	Unit
VDSS	Drain - source voltage		1200	V
lo	Continuous drain current	Tc = 25 °C	742	Α
		Tc = 80 °C	586	
Ірм	Pulsed drain current		1500	
V _G S	Gate - source voltage		-10 to 23	V
V _{GSOP}	Gate - source voltage; recommended operation values		-5 to 18	
R _{DS(on)}	Drain - source ON resistance		2.85	mΩ
P _D	Power dissipation	Tc = 25 °C	3200	W

3.2 Electrical Performance

The following tables show the SiC MOSFET characteristics (per SiC MOSFET) of the MSCMC120AM02CT6LIAG device.

Table 2 • Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
IDSS	Zero gate voltage drain current	V _{GS} = 0 V, V _{Ds} = 1200 V			200	1200	μΑ
R _{DS(on)}	Drain- source on resistance	$V_{GS} = 20 \text{ V; } I_D = 600 \text{ A}$	T _j = 25 °C		2.1	2.85	mΩ
		V _{GS} = 18 V; I _D = 600 A	T _j = 175 °C		4.5		-
V _{GS(th)}	Gate threshold voltage	$V_{GS} = V_{Ds}$, $I_D = 180 \text{ mA}$		2	2.6	4	V
Igss	Gate- source leakage current	$V_{GS} = 20 \text{ V}, V_{Ds} = 0 \text{ V}$				7.2	μΑ

Table 3 • Dynamic Characteristics

Symbol	Characteristic	Test conditions		Min	Тур	Max	Unit
Ciss	Input capacitance	V _{GS} = 0 V	V _{GS} = 0 V		33.5		- nF
Coss	Output capacitance	V _{DS} = 1000 V			2.6		- IIF
Crss	Reverse transfer capacitance	f = 1 MHz			0.18		=
Qg	Total gate charge	V _{GS} = -5 to 20 V			1932		- nC
Qgs	Gate – source charge	V _{Bus} = 800 V			552		- nc
Qgd	Gate – drain charge	I _D = 600 A			600		_
T _{d(on)}	Turn-on delay time	V _{GS} = -5 to 20 V	$V_{GS} = -5 \text{ to } 20 \text{ V}$ - $V_{Bus} = 600 \text{ V}$ - $I_D = 600 \text{ A}$ $R_L = 1 \Omega$; $R_G = 0.25 \Omega$		21		- ns
Tr	Rise time	V _{Bus} = 600 V			19		113
T _{d(off)}	Turn-off delay time				50		_
Tf	Fall time				30		-
Eon	Turn on energy	Inductive Switching	T _j = 150 °C		8.9		mJ
Eoff	Turn off energy	$V_{GS} = -5 \text{ to } 20 \text{ V}$ $V_{Bus} = 600 \text{ V}$	T _j = 150 °C		5.8		_
		I _D = 600 A					
		$R_G = 0.25 \Omega$					
RGint	Internal gate resistance				0.6		Ω
RthJC	Junction-to-case thermal resist	ance				0.047	°C/W

Table 4 • Body Diode Ratings and Characteristics

Symbol	Characteristic	Test conditions		Min	Тур	Max	Unit
V.	Diada farward valtage	V _{GS} = -5 V	T _j = 25 °C		4		V
V _{SD}	Diode forward voltage	I _{SD} = 300 A	T _j = 175 °C		3.5		_
trr	Reverse recovery time	- I _{SD} = 600 A ; V _{GS} :			45		ns
Qrr	Reverse recovery charge	•			4.9		μC
Irr	Reverse recovery current	V _R = 800 V ; di _F /c	V_R = 800 V ; dir/dt = 12000 A/ μs		162		Α

The following table shows the SiC diode characteristics (per SiC diode) of the MSCMC120AM02CT6LIAG device.

Table 5 • SiC Diode Charcteristics

Symbol	Characteristics	Test conditions		Min	Тур	Max	Unit
VRRM	Peak repetitive reverse voltage					1200	V
Irm	Reverse leakage current	V _R = 1200 V	T _j = 25 °C		0.6	3	mA
			T _j = 175 °C		1.8	6	=
l _F	DC forward current		Tc = 100 °C		300		Α
VF	Diode forward voltage	I _F = 300 A	T _j = 25 °C		1.6	1.8	V
			T _j = 175 °C		2.25	2.7	=
Qc	Total capacitive charge	V _R = 800 V			1476		nC
С	Total capacitance	f = 1 MHz, V _R = 4	100 V		1380		pF
		f = 1 MHz, V _R = 8	300 V		1038		_
RthJC	Junction-to-case thermal resistance					0.091	°C/W

The following tables show the thermal and package characteristics of the MSCMC120AM02CT6LIAG device.

Table 6 • Package Charcteristics

Symbol	Characteristic			Min	Max	Unit
Visol	RMS isolation voltage, any to	erminal to case t =1 min, 5	50 to 60 Hz	4000		V
Tı .	Operating junction tempera	Operating junction temperature range			175	°C
TJOP	Recommended junction tem	-40	Tımax –25	=		
Тѕтб	Storage temperature range			-40	125	_
Тс	Operating case temperature	:		-40	125	=
Torque	Mounting torque	For terminals	M2.5	0.4	0.6	N.m
			M4	2	3	=
			M5	2	3.5	_
		To heatsink	M6	3	5	=
Loc	Module stray inductance be	tween VBUS and 0/VBUS			3	nH
Wt	Package weight				320	g

Table 7 • Temperature Sensor NTC

Symbol	Characteristic	Min	Тур	Max	Unit
R ₂₅	Resistance at 25 °C		50		kΩ
ΔR25/R25			5		%
B _{25/85}	T ₂₅ = 298.15 K		3952		K
ΔΒ/Β	Tc= 100 °C		4		%

Figure 1 • NTC Formula

$$R_T = \frac{R_{25}}{\exp\left[B_{25/85}\left(\frac{1}{T_{25}} - \frac{1}{T}\right)\right]}$$

T: Thermistor temperature R_T: Thermistor value at T

Note: See the APT0406 application note at www.microsemi.com.

3.3 Typical Performance Curves

This section shows the typical performance curves for the MSCMC120AM02CT6LIAG device.

The following section shows the typical performance curves for SiC MOSFET.

Figure 2 • Maximum Thermal Impedance



Figure 3 • Output Characteristics

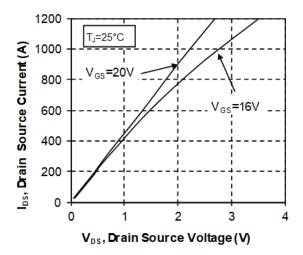


Figure 4 • Output Characteristics II

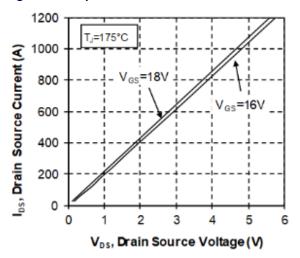


Figure 5 • Normalized RDS(on) vs. Temperature

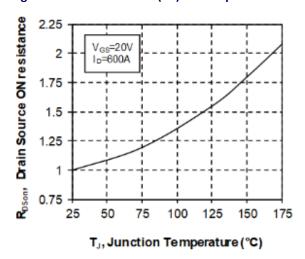


Figure 6 • Transfer Characteristics

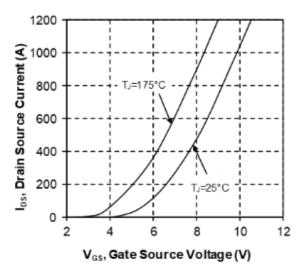


Figure 7 • Switching Energy vs. Rg

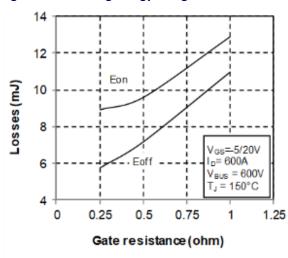


Figure 8 • Switching Energy vs. Current

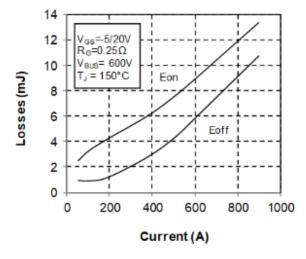


Figure 9 • Capacitance vs. Drain Source Voltage

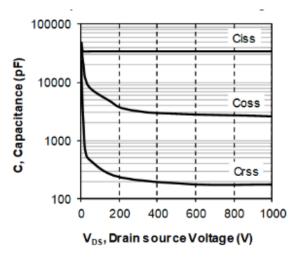


Figure 10 • Gate Charge vs. Gate Source Voltage

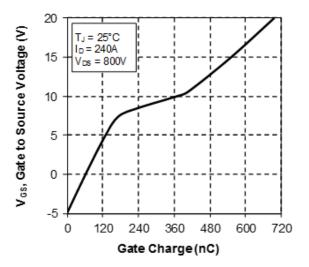


Figure 11 • Body Diode Characteristics

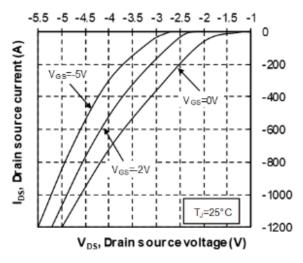


Figure 13 • Body Diode Characteristics II

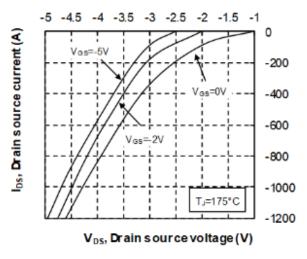


Figure 15 • Operating Frequency vs. Drain Current

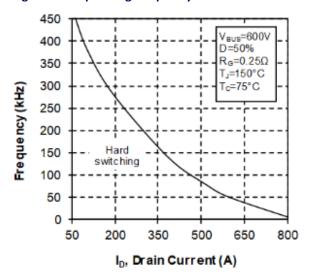


Figure 12 • 3rd Quadrant Characteristics

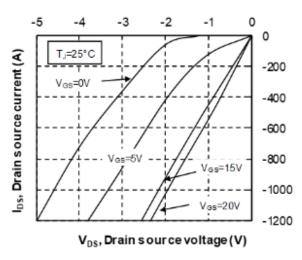
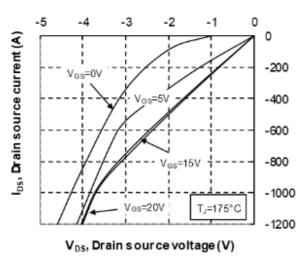



Figure 14 • 3rd Quadrant Characteristics

The following section shows the typical performance curves for SiC Diode.

Figure 16 • SiC Diode Maximum Thermal Impedance

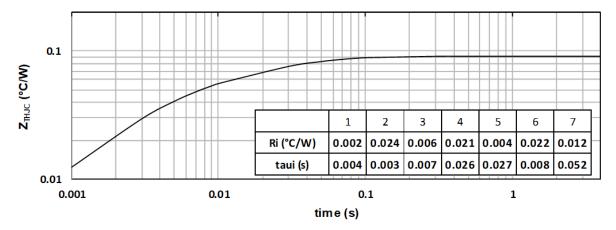


Figure 17 • Forward Characteristics

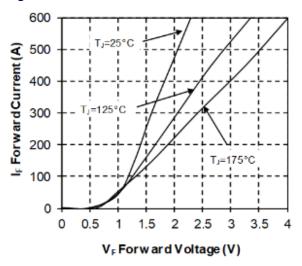


Figure 18 • Reverse Characteristics

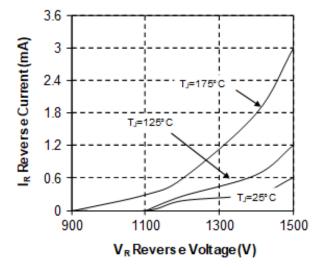
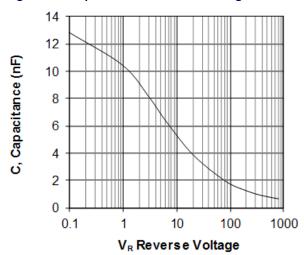



Figure 19 • Capacitance vs. Reverse Voltage

4 Package Specification

This section outlines the package specification for the MSCMC120AM02CT6LIAG device.

4.1 Package Outline Drawing

This section shows the package drawing of the MSCMC120AM02CT6LIAG device. Dimensions are in millimeters.

11,50

11,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10,50

10

Figure 20 • Package Outline Drawing

Note: See the AN1911 application note at www.microsemi.com.

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2018 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or prameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided is, where is' and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.