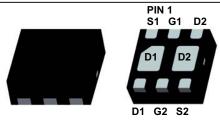
ON Semiconductor

Is Now

Onsemi

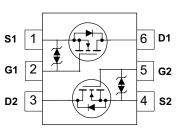
To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari


ON Semiconductor®

FDMA1028NZ

Dual N-Channel PowerTrench[®] MOSFET


General Description

This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses. The MicroFET 2x2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

Features

- 3.7 A, 20V. $R_{DS(ON)} = 68 \text{ m}\Omega @ V_{GS} = 4.5V$ $R_{DS(ON)} = 86 \text{ m}\Omega @ V_{GS} = 2.5V$
- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- HBM ESD protection level > 2kV (Note 3)
- RoHS Compliant
- Free from halogenated compounds and antimony oxides

MicroFET 2x2

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain-Source Voltage		20	V	
V _{GS}	Gate-Source Voltage		±12	V	
I _D	Drain Current – Continuous	(Note 1a)	3.7	A	
	– Pulsed		6		
P _D	Power Dissipation for Single Operation	(Note 1a)	1.4	W	
		(Note 1b)	0.7		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	86 (Single Operation)	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	173 (Single Operation)	∘c/w
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	69 (Dual Operation)	10/11
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1d)	151 (Dual Operation)	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
028	FDMA1028NZ 7" 8mm		3000 units	

©20F3 Semiconductor Components Industries, LLC. October-2017, Rev. 2

Publication Order Number: FDMA1028NZ/D

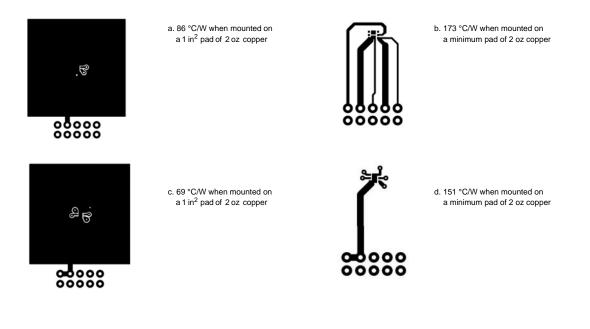
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics		•			
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		15		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 V$, $V_{GS} = 0 V$			1	μA
I _{GSS}	Gate–Body Leakage	V _{GS} = ± 12 V, V _{DS} = 0 V			±10	μΑ
	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 250 \ \mu A$	0.6	1.0	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			37 50 53	68 86 90	mΩ
g _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 3.7 A		16		S
Dynamic	Characteristics					
Ciss	Input Capacitance	V _{DS} = 10 V, V _{GS} = 0 V,		340		pF
Coss	Output Capacitance	f = 1.0 MHz		80		pF
C _{rss}	Reverse Transfer Capacitance]		60		pF
Rg	Gate Resistance				25	Ω

Switching Characteristics (Note 2)

t _{d(on)}	Turn–On Delay Time		_D = 1 A,	8	16	ns
t _r	Turn–On Rise Time	V _{GS} = 4.5 V, F	$R_{GEN} = 6 \Omega$	8	16	ns
t _{d(off)}	Turn–Off Delay Time			14	26	ns
t _f	Turn–Off Fall Time			3	6	ns
Qg	Total Gate Charge	V _{DS} = 10 V, I	_D = 3.7 A,	4	6	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 4.5 V		0.7		nC
Q _{gd}	Gate-Drain Charge			1.1		nC

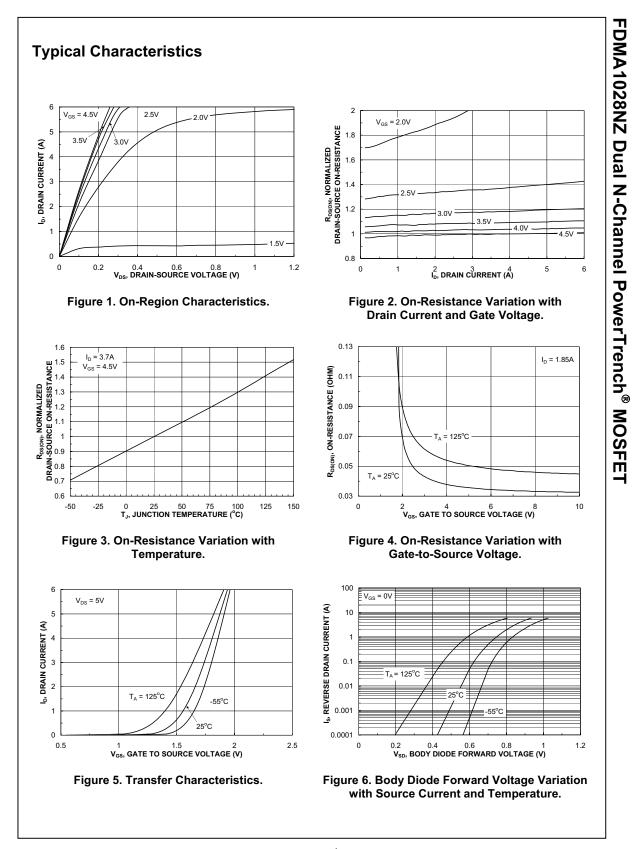
FDMA1028NZ Dual N-Channel PowerTrench[®] MOSFET

www.onsemi.com 2

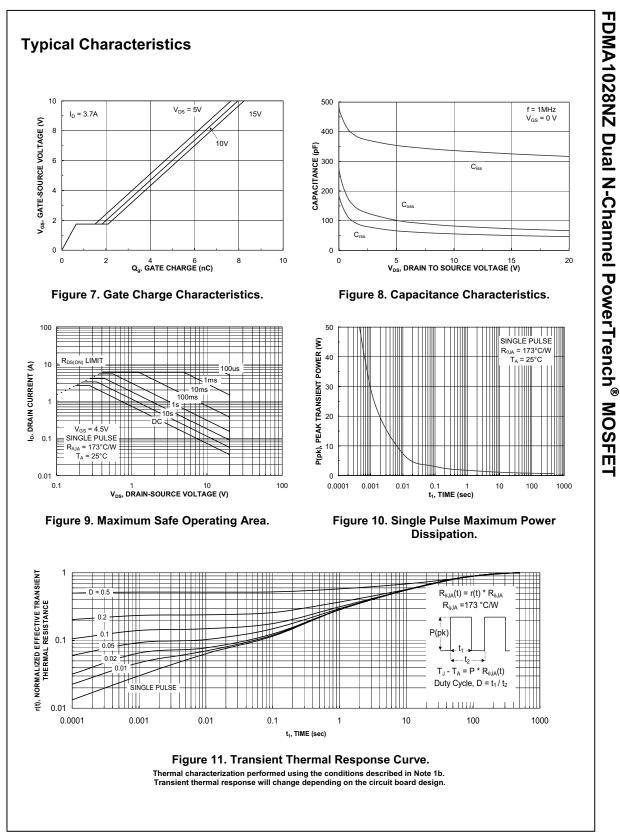

FDMA1028NZ Dual N-Channel PowerTrench[®] MOSFET

Electrical Characteristics $T_J = 25 \degree C$ unless otherwise noted

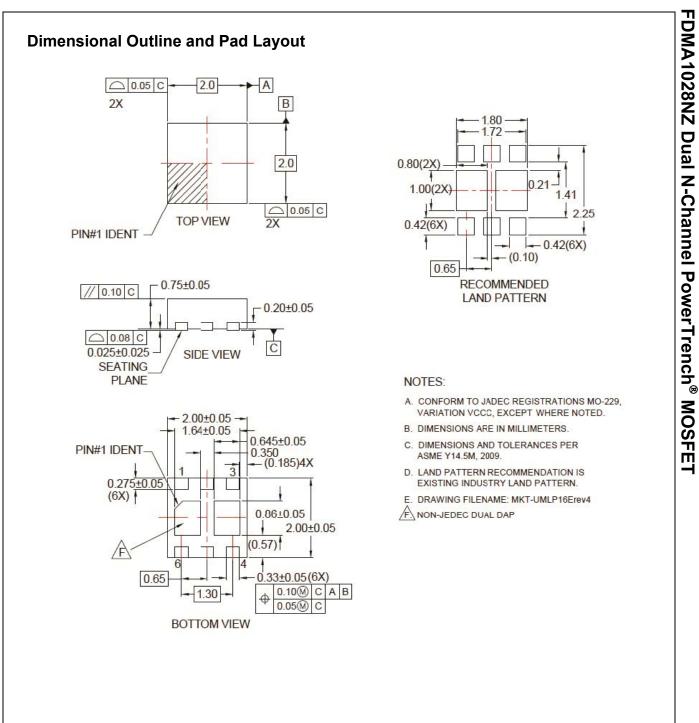
Notes:


1. R_{8JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{8JA} is guaranteed by design while R_{8JA} is determined by the user's board design. (a) $R_{0JA} = 86 \text{ °C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.

- (b) R_{0JA} = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
- (c) $R_{\theta JA} = 69 \text{ }^{\circ}\text{C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
- (d) $R_{\theta JA}$ = 151 $^{o}\text{C/W}$ when mounted on a minimum pad of 2 oz copper. For dual operation.



2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%


3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

www.onsemi.com 4

www.onsemi.com 5

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative