
LINEAR SYSTEMS

Improved Standard Products[®]

FEATURES						
DIRECT REPLACEMENT FOR INTERSIL 3N190 & 3N191						
LOW GATE LEAKAGE CURRENT I _{GSS} ≤ ±10pA						
LOW TRANSFER CAPACITANCE $C_{rss} \le 1.0 pF$						
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-65 to +150 °C					
Operating Junction Temperature	-55 to +135 °C					
Maximum Power Dissipation @ TA=25 ^o C						
Continuous Power Dissipation One Side	300mW					
Continuous Power Dissipation Both Sides	525mW					
Maximum Current						
Drain to Source ²	50mA					
Maximum Voltages						
Drain to Gate ²	30V					
Drain to Source ²	30V					
Gate to Gate	±80V					

<u>3N190 3N191</u>

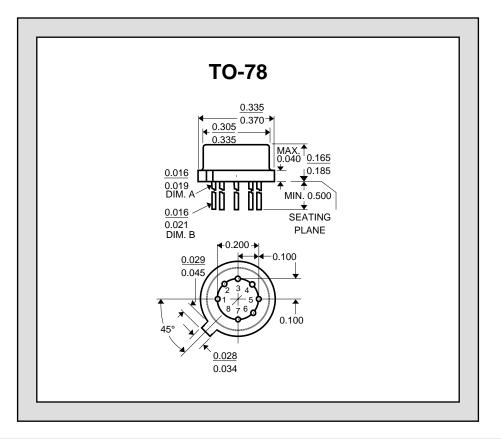
P-CHANNEL DUAL MOSFET ENHANCEMENT MODE

MATCHING CHARACTERISTICS @ 25 °C (unless otherwise stated) (V_{BS} = 0V unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
g_{fs1}/g_{fs2}	Forward Transconductance Ratio	0.85		1.0		$V_{DS} = -15V, I_D = -500\mu A, f = 1 \text{kHz}$
V _{GS1-2}	Gate to Source Threshold Voltage Differential			100	mV	$V_{DS} = -15V, I_D = -500\mu A$
$\frac{\Delta V_{\text{GS1-2}}}{\Delta T}$	Gate to Source Threshold Voltage Differential with Temperature ⁴			100	µV/°C	V _{DS} = -15V, I _D = -500µA T _S = -55 to +25 °C
$\frac{\Delta V_{GS1-2}}{\Delta T}$	Gate to Source Threshold Voltage Differential with Temperature ⁴			100	μν/ Ο	$V_{DS} = -15V, I_D = -500\mu A$ T _S = +25 to +125 °C

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated) (V_{SB} = 0V unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{DSS}	Drain to Source Breakdown Voltage	-40			V	$I_D = -10\mu A$
BV _{SDS}	Source to Drain Breakdown Voltage	-40				$I_S = -10\mu A$, $V_{BD} = 0V$
Vgs	Gate to Source Voltage	-3.0		-6.5		$V_{DS} = -15V, I_{D} = -500 \mu A$
Maaria	Gate to Source Threshold Voltage	-2.0		-5.0	-	$V_{DS} = V_{GS}, I_D = -10 \mu A$
$V_{GS(th)}$	Gale to Source Threshold voltage	-2.0		-5.0		$V_{DS} = -15V, I_D = -500 \mu A$
Igssr	Reverse Gate Leakage Current			10	рА	$V_{GS} = 40V$
I _{GSSF}	Forward Gate Leakage Current			-10		$V_{GS} = -40V$
IDSS	Drain Leakage Current "Off"			-200		V _{DS} = -15V
I _{SDS}	Source to Drain Leakage Current "Off"			-400		V_{SD} = -15V, V_{DB} = 0V
I _{D(on)}	Drain Current "On" ³	-5.0		-30.0	mA	$V_{DS} = -15V, V_{GS} = -10V$
I _{G1G2}	Gate to Gate Isolation Current	-		±1.0	μA	$V_{G1G2} = \pm 80V, I_D = I_S = 0 = mA$


Linear Integrated Systems

ELECTRICAL CHARACTERISTICS CONT. @ 25 °C (unless otherwise stated) (V_{SB} = 0V unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
g fs	Forward Transconductance ⁴	1500		4000	μS	1/2 = 451/1 = 5m0 = 5 = 1/2
gos	Output Admittance			300		$V_{DS} = -15V, I_D = -5mA, f = 1kHz$
r _{ds(on)}	Drain to Source "On" Resistance			300	Ω	$V_{DS} = -20V, I_D = -100 \mu A$
Crss	Reverse Transfer Capacitance			1.0		
Ciss	Input Capacitance Output Shorted			4.5	pF	$V_{DS} = -15V, I_D = -5mA, f = 1MHz$
Coss	Output Capacitance Input Shorted			3.0		

SWITCHING CHARACTERISTICS

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
t _{d(on)}	Turn On Delay Time			15		
tr	Turn On Rise Time			30	ns	$V_{DD} = -15V, I_{D(on)} = -5mA,$ $R_G = R_I = 1.4k\Omega$
t _{off}	Turn Off Time			50		$N_{0} = N_{1} = 1.4N_{2}$

<u>NOTES</u>

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Per transistor.
- 3. Pulse: t = 300μ s, Duty Cycle $\leq 3\%$
- 4. Measured at end points, T_A and T_B .

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems develops and produces the highest performance semiconductors of their kind in the industry. Linear Systems, founded in 1987, uses patented and proprietary processes and designs to create its high performance discrete semiconductors. Expertise brought to the company is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company founder John H. Hall.

Linear Integrated Systems