

VRF141 VRF141MP

28V, 150W, 175MHz

RF POWER VERTICAL MOSFET

The VRF141 is a gold-metallized silicon n-channel RF power transistor designed for broadband commercial and military applications requiring high power and gain without compromising reliability, ruggedness, or inter-modulation distortion.

FEATURES

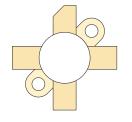
- Improved Ruggedness $V_{(BR)DSS} = 80$ V
- 150W with 22dB Typical Gain @ 30MHz, 28V
- 150W with 13dB Typical Gain @ 175MHz, 28V
- Excellent Stability & Low IMD
- Common Source Configuration
- Available in Matched Pairs

- 30:1 Load VSWR Capability at Specified Operating Conditions
- Nitride Passivated
- Refractory Gold Metallization
- High Voltage Replacement for MRF141
- RoHS Compliant 🍏

Maximum Rat	ings All Ratings: T _c =25	All Ratings: T _c =25°C unless otherwise specifie			
Symbol	Parameter	VRF141(MP)	Unit		
V _{DSS}	Drain-Source Voltage	80	V		
Ι _D	Continuous Drain Current @ $T_c = 25^{\circ}C$	20	А		
V _{GS}	Gate-Source Voltage	±40	V		
P _D	Total Device dissipation @ $T_c = 25^{\circ}C$	300	W		
T _{stg}	Storage Temperature Range	-65 to 150	°C		
TJ	Operating Junction Temperature	200	C		

Static Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage (V_{GS} = 0V, I_{D} = 100mA)	80			V
V _{DS(ON)}	On State Drain Voltage (I _{D(ON)} = 10A, V _{GS} = 10V)		1.0	1.3	v
I _{DSS}	Zero Gate Voltage Drain Current (V_{DS} = 60V, V_{GS} = 0V)			1.0	mA
I _{GSS}	Gate-Source Leakage Current (V_{DS} = ±20V, V_{DS} = 0V)			1.0	μA
9 _{fs}	Forward Transconductance (V_{DS} = 10V, I_{D} = 5A)	5.0			mhos
V _{GS(TH)}	Gate Threshold Voltage (V_{DS} = 10V, I_{D} = 100mA)	2.9	3.6	4.4	V


Thermal Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit
R _{θJC}	Junction to Case Thermal Resistance			0.60	°C/W

Dynamic Characteristics

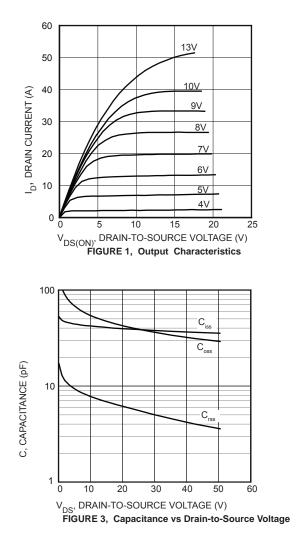
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
C _{ISS}	Input Capacitance	V _{GS} = 0V		400		
C _{oss}	Output Capacitance	V _{DS} = 28V		375		pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		50		

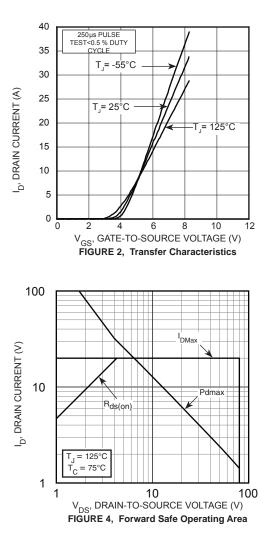
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

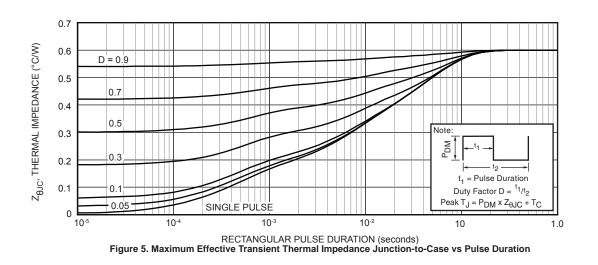
Functional Characteristics

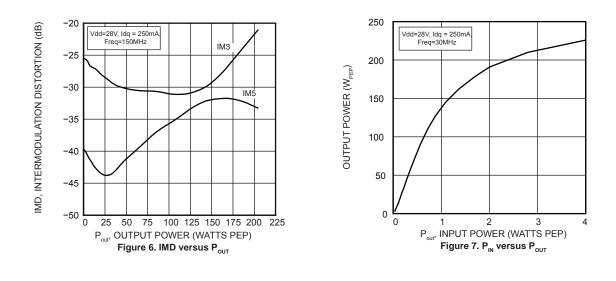
VRF141(MP)

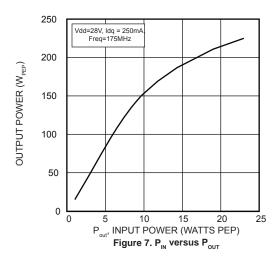
Symbol	Parameter	Min	Тур	Max	Unit
G _{PS}	$f_1 = 30MHz, f_2 = 30.001MHz, V_{DD} = 28V, I_{DQ} = 250mA, P_{out} = 150W_{PEP}$	16	20		dB
G _{PS}	f ₁ = 175MHz, V _{DD} = 28V, I _{DQ} = 250mA, P _{out} = 150W		13		αв
η	$f_1 = 30MHz, f_2 = 30.001MHz, V_{DD} = 28V, I_{DQ} = 250mA, P_{out} = 150W_{PEP}$	40	45		%
IMD _(d3)	$f_1 = 30MHz$, $f_2 = 30.001MHz$, $V_{DD} = 28V$, $I_{DQ} = 250mA$, $P_{out} = 150W_{PEP}^{-1}$		-30	-28	dB
IMD _(d11)	$f_1 = 30MHz, f_2 = 30.001MHz, V_{DD} = 28V, I_{DQ} = 250mA, P_{out} = 150W_{PEP}$		-60		uв
Ψ	$\rm f_1$ = 30MHz, $\rm f_2$ = 30.001MHz, $\rm V_{DD}$ = 28V, $\rm I_{DQ}$ = 250mA, $\rm P_{out}$ = 150W $_{\rm PEP}$ 30:1 VSWR - All Phase Angles	No Degradation in Output Power		Power	

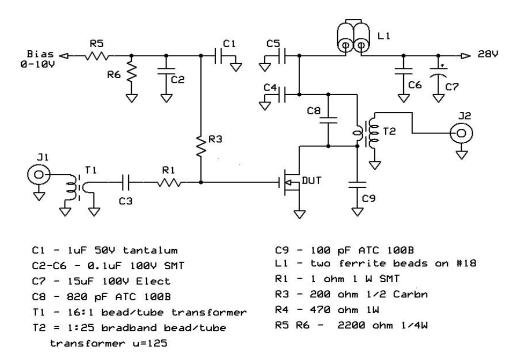

Class A Characteristics

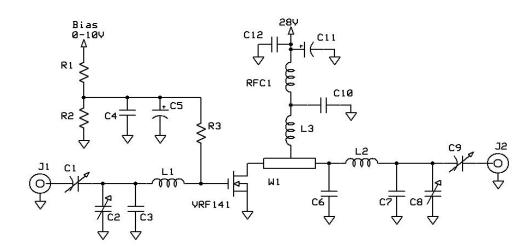

Symbol	Test Conditions	Min	Тур	Max	Unit
G _{PS}	$f_1 = 30MHz, f_2 = 30.001MHz, V_{DD} = 28V, I_{DQ} = 4.0A, P_{out} = 50W_{PEP}$		23		
IMD _(d3)	$f_1 = 30MHz$, $f_2 = 30.001MHz$, $V_{DD} = 28V$, $I_{DQ} = 4.0A$, $P_{out} = 50W_{PEP}$		-50		dB
IMD _(d9-d13)	$f_1 = 30MHz$, $f_2 = 30.001MHz$, $V_{DD} = 28V$, $I_{DQ} = 4.0A$, $P_{out} = 50W_{PEP}$		-75		


1. To MIL-STD-1311 Version A, test method 2204B, Two Tone, Reference Each Tone

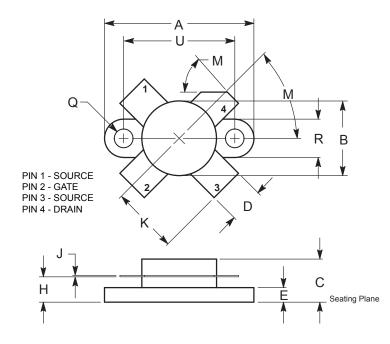

Microsemi reserves the right to change, without notice, the specifications and information contained herein.


Typical Performance Curves





175 MHz test Circuit


C1, 2, 8, 9 - ARCO 463 C3 C7 - 25 pF ATC 100B C4 C10 C12 - 0.1uF 100V SMT C5 - 1 uF 15WV tant C6 - 270 pF ATC 100B C10 - .05 100V 1206 SMT C11 - 15uF 100V Elect

L1 - 3/4" #18 ga into Hairpin W1 - printed line 0.23"W x 0.7" L L2 - 2t #16 ga .25" dia x .25" ~ 35nH L3 -2 turns #16 ga 5/16" ID tight. ~ 50nH R1 R2 - 2.2k ohm 1/4W R3 - 150 ohm 1/4W RFC1 Fair-Rite 2961666631 (VK200-4B) Adding MP at the end of P/N specifies a matched pair where $V_{GS(TH)}$ is matched between the two parts. V_{TH} values are marked on the devices per the following table.

Code	Vth Range	Code 2	Vth Range
А	2.900 - 2.975	М	3.650 - 3.725
В	2.975 - 3.050	N	3.725 - 3.800
С	3.050 - 3.125	Р	3.800 - 3.875
D	3.125 - 3.200	R	3.875 - 3.950
E	3.200 - 3.275	S	3.950 - 4.025
F	3.275 - 3.350	Т	4.025 - 4.100
G	3.350 - 3.425	W	4.100 - 4.175
Н	3.425 - 3.500	X	4.175 - 4.250
J	3.500 - 3.575	Y	4.250 - 4.325
К	3.575 - 3.650	Z	4.325 - 4.400

 $V_{_{TH}}$ values are based on Microsemi measurements at datasheet conditions with an accuracy of 1.0%.

M174 Package Outline .5" SOE All Dimensions to be ±.005"

DIM	INC	INCHES		ETERS	
DIM	MIN	MAX	MIN	MAX	
А	0.096	0.990	24.39	25.14	
В	0.465	0.510	11.82	12.95	
С	0.229	0.275	5.82	6.98	
D	0.216	0.235	5.49	5.96	
E	0.084	0.110	2.14	2.79	
н	0.144	0.178	3.66	4.52	
J	0.003	0.007	0.08	0.17	
к	0.435		11.0		
М	45° NOM		45° NOM		
Q	0.115	0.130	2.93	3.30	
R	0.246	0.255	6.25	6.47	
U	0.720	0.730	18.29 18.54		

a 🔨 MICROCHIP company

Microsemi Headquarters One Enterprise, Aliso Viejo,

CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com

© 2020 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The Information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi dees not grant, explicitly to rimplicitly, to any patter rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SOCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www. microsemi.com.