MOSFET – N-Channel, UniFET™

200 V, 16 A, 125 m Ω

FDD18N20LZ

Description

UniFET MOSFET is ON Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on–state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Features

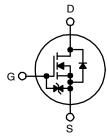
- $R_{DS(on)} = 125 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 8 \text{ A}$
- Low Gate Charge (Typ. 30 nC)
- Low C_{RSS} (Typ. 25 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability
- ESD Improved Capability
- These Device is Pb-Free and is RoHS Compliant

Applications

- LED TV
- Consumer Appliances
- Uninterruptible Power Supply

ON Semiconductor®

www.onsemi.com


DPAK3 (TO-252 3 LD) CASE 369AS

MARKING DIAGRAM

FDD18N20LZ = Specific Device Code \$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = 3-Digit Date Code

&K = 2-Digits Lot run Traceability Code

N-Channel MOSFET

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter		FDD18N20LZ	Unit
V _{DSS}	Drain to Source Voltage		200	V
V_{GSS}	Gate to Source Voltage		±20	V
I _D	Drain Current	Continuous (T _C = 25°C)	16	Α
		Continuous (T _C = 100°C)	9.6	1
I _{DM}	Drain Current (Note 1)	Pulsed	64	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		320	mJ
I _{AR}	Avalanche Current (Note 1)		16	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		8.9	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		10	V/ns
P_{D}	Power Dissipation	(T _C = 25°C)	89	W
		Derate above 25°C	0.7	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. Repetitive rating: pulse–width limited by maximum junction temperature.
2. L = 2.5 mH, I_{AS} = 16 A, V_{DD} = 50 V, R_{G} = 25 Ω , starting T_{J} = 25°C.
3. $I_{SD} \le$ 16 A, di/dt \le 200 A/ μ s, $V_{DD} \le$ BV_{DSS}, starting T_{J} = 25°C.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDD18N20LZ	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case, Max.	1.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	83	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V, T_J = 25^{\circ}C$	200	-	_	V
ΔBV_{DSS} / Δ	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	0.2	_	V/°C
TJ	Zero Gate Voltage Drain Current	V _{DS} = 200 V, V _{GS} = 0 V	-	-	1	μΑ
DSS		V _{DS} = 160 V, T _C = 125°C	-	-	10	
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±10	μΑ
ON CHARAC	CTERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	_	2.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 8 A	1	0.10	0.125	Ω
		V _{GS} = 5 V, I _D = 8 A	1	0.11	0.13	
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 2 A	-	11	-	S
DYNAMIC C	HARACTERISTICS					•
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$	_	1185	1575	pF
C _{oss}	Output Capacitance	f = 1 MHz	_	190	255	pF
C _{rss}	Reverse Transfer Capacitance		-	25	40	pF
Q _{g(tot)}	Total Gate Charge at 10V	V _{DS} = 200 V, I _D = 16 A, V _{GS} = 10 V (Note 4)	-	30	40	nC
Q _{gs}	Gate to Source Gate Charge		_	3.5	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	8.5	_	nC
SWITCHING	CHARACTERISTICS			•		
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 100 \text{ V}, I_D = 16 \text{ A}, V_{GS} = 10 \text{ V},$	-	15	40	ns
t _r	Turn-On Rise Time	$R_G = 25 \Omega$ (Note 4)	-	20	50	ns
t _{d(off)}	Turn-Off Delay Time		-	135	280	ns
t _f	Turn-Off Fall Time		-	50	110	ns
DAIN-SOUR	CE DIODE CHARACTERISTICS				•	
I _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	16	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forv	iode Forward Current		-	64	Α
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 4 A	-	-	1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 4 A	-	105	-	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs	_	0.4	_	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

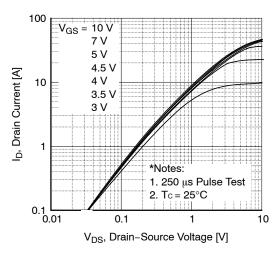


Figure 1. On-Region Characteristics

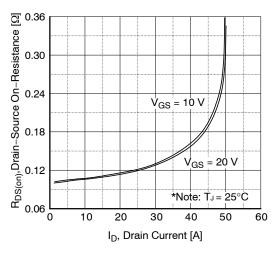


Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage

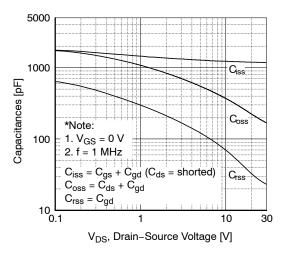


Figure 5. Capacitance Characteristics

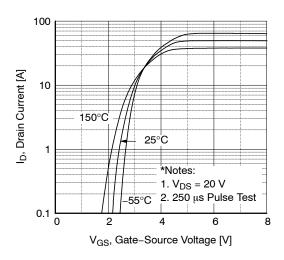


Figure 2. Transfer Characteristics

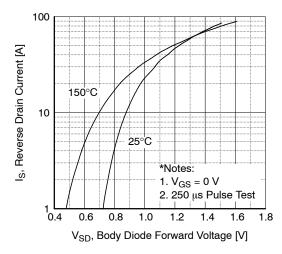


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

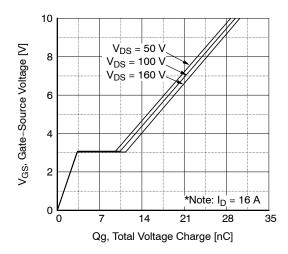


Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

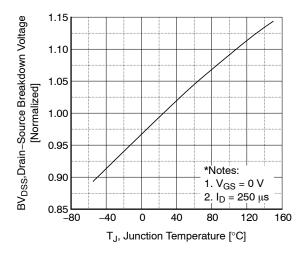


Figure 7. Breakdown Voltage Variation vs. Temperature

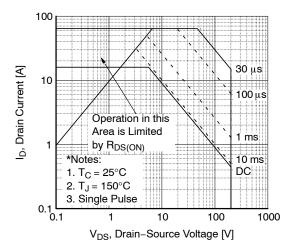


Figure 9. Maximum Safe Operating Area

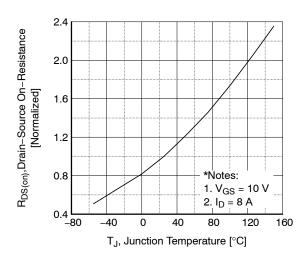


Figure 8. On–Resistance Variation vs. Temperature

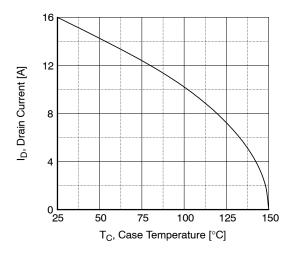


Figure 10. Maximum Drain Current vs.

Case Temperature

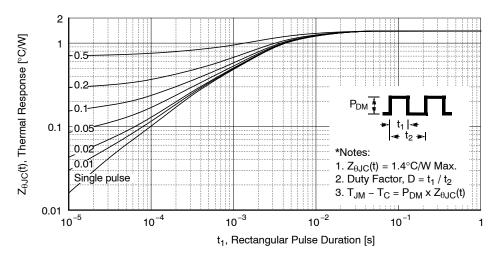
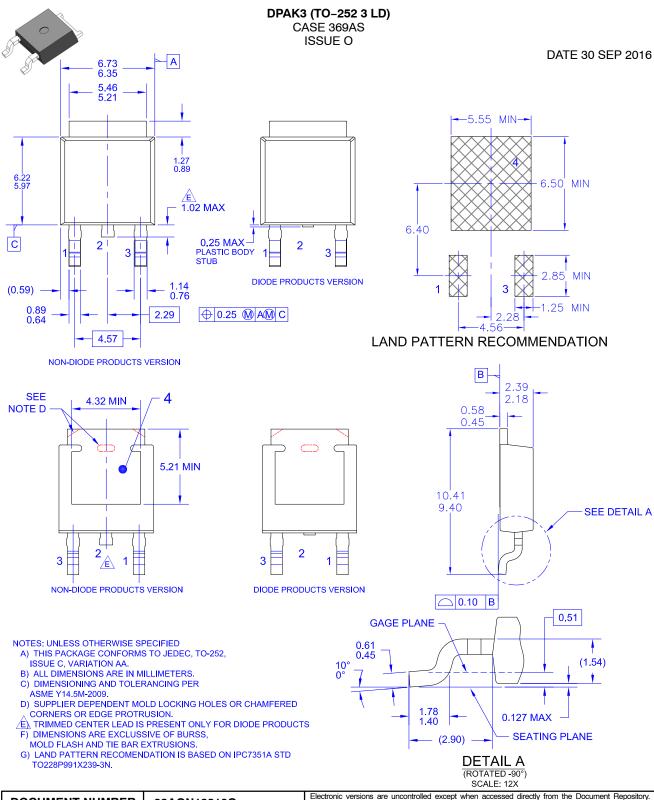


Figure 11. Transient Thermal Response Curve


PACKAGE MARKING ANDORDERING INFORMATION

Part Number	Top Mark	Package	Reel Size	Tape Width	Shipping [†]
FDD18N20LZ	FDD18N20LZ	DPAK3 (TO-252 3 LD) (Pb-Free)	330 mm	16 mm	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

UniFET is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98AON13810G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK3 (TO-252 3 LD)		PAGE 1 OF 1	

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative