General Purpose Transistors ## **NPN Silicon** This transistor is designed for general purpose amplifier applications. It is housed in the SOT-416/SC-75 package which is designed for low power surface mount applications. #### **Features** - S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant* #### **MAXIMUM RATINGS** $(T_A = 25^{\circ}C)$ | Rating | Symbol | Value | Unit | |--------------------------------|------------------|-------|------| | Collector – Emitter Voltage | V_{CEO} | 40 | Vdc | | Collector – Base Voltage | V _{CBO} | 60 | Vdc | | Emitter – Base Voltage | V _{EBO} | 6.0 | Vdc | | Collector Current – Continuous | Ic | 200 | mAdc | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------------------------|-------------|-------------| | Total Device Dissipation,
FR-4 Board (Note 1) @T _A = 25°C
Derated above 25°C | P _D | 200
1.6 | mW
mW/°C | | Thermal Resistance, Junction-to-Ambient (Note 1) | $R_{\theta JA}$ | 600 | °C/W | | Total Device Dissipation,
FR-4 Board (Note 2) @T _A = 25°C
Derated above 25°C | P _D | 300
2.4 | mW
mW/°C | | Thermal Resistance, Junction-to-Ambient (Note 2) | $R_{\theta JA}$ | 400 | °C/W | | Junction and Storage Temperature Range | T _J , T _{stg} | -65 to +150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. FR-4 @ Minimum Pad - 2. FR-4 @ 1.0 × 1.0 Inch Pad ON Semiconductor® www.onsemi.com # GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT SOT-416/SC-75 CASE 463 STYLE 1 #### **MARKING DIAGRAM** AM = Device Code M = Date Code* = Pb–Free Package (Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location. #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------------|----------------------|-----------------------| | MMBT3904TT1G | SOT-416
(Pb-Free) | 3,000 Tape & Reel | | SMMBT3904TT1G | SOT-416
(Pb-Free) | 3,000 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **ELECTRICAL CHARACTERISTICS** ($T_A = 25$ °C unless otherwise noted) | Characteristic | Symbol | Min | Max | Unit | |--|----------------------|-----------------------------|--------------------|--------------------| | OFF CHARACTERISTICS | , | | | 1 | | Collector – Emitter Breakdown Voltage (Note 3) (I _C = 1.0 mAdc, I _B = 0) | V _{(BR)CEO} | 40 | _ | Vdc | | Collector – Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$) | V _{(BR)CBO} | 60 | _ | Vdc | | Emitter – Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$ | V _{(BR)EBO} | 6.0 | _ | Vdc | | Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc) | I _{BL} | - | 50 | nAdc | | Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc) | I _{CEX} | – 50 nAdd | | nAdc | | ON CHARACTERISTICS (Note 3) | | | | 1 | | DC Current Gain
($I_C = 0.1 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)
($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)
($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)
($I_C = 50 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)
($I_C = 100 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) | h _{FE} | 40
70
100
60
30 | -
300
-
- | _ | | Collector – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$) | V _{CE(sat)} | -
- | 0.2
0.3 | Vdc | | Base – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$) | V _{BE(sat)} | 0.65 | 0.85
0.95 | Vdc | | SMALL-SIGNAL CHARACTERISTICS | - | | | • | | Current – Gain – Bandwidth Product ($I_C = 10 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$) | f _T | 300 | _ | MHz | | Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$ | C _{obo} | - | 4.0 | pF | | Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 1.0 \text{ MHz}$) | C _{ibo} | - | 8.0 | pF | | Input Impedance ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 1.0 \text{ mAdc}$, $f = 1.0 \text{ kHz}$) | h _{ie} | 1.0 | 10 | k Ω | | Voltage Feedback Ratio $(V_{CE} = 10 \text{ Vdc}, I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$ | h _{re} | 0.5 | 8.0 | X 10 ⁻⁴ | | Small – Signal Current Gain
(V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz) | h _{fe} | 100 | 400 | - | | Output Admittance ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 1.0 \text{ mAdc}$, $f = 1.0 \text{ kHz}$) | h _{oe} | 1.0 | 40 | μmhos | | Noise Figure (V _{CE} = 5.0 Vdc, I _C = 100 μ Adc, R _S = 1.0 k Ω , f = 1.0 kHz) | NF | - | 5.0 | dB | | SWITCHING CHARACTERISTICS | | | | | | Delay Time (V _{CC} = 3.0 Vdc, V _{BE} = -0.5 Vdc)
MMBT3904TT1G, SMMBT3904TT1G | t _d | - | 35 | | | Rise Time $(I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$
MMBT3904TT1G, SMMBT3904TT1G | t _r | - | 35 | ns | | Storage Time $(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc})$
MMBT3904TT1G, SMMBT3904TT1G | t _s | - | 200 | | | Fall Time $(I_{B1} = I_{B2} = 1.0 \text{ mAdc})$
MMBT3904TT1G, SMMBT3904TT1G | t _f | _ | 50 | | ^{3.} Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2.0\%$. **Figure 1. Normalized Thermal Response** * Total shunt capacitance of test jig and connectors Figure 2. Delay and Rise Time Equivalent Test Circuit Figure 3. Storage and Fall Time Equivalent Test Circuit #### TYPICAL TRANSIENT CHARACTERISTICS Figure 4. Capacitance Figure 5. Charge Data Figure 6. Turn-On Time Figure 7. Rise Time Figure 8. Storage Time Figure 9. Fall Time #### TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS **NOISE FIGURE VARIATIONS** $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$ Figure 10. Noise Figure Figure 11. Noise Figure #### h PARAMETERS $(V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$ Figure 12. Current Gain Figure 13. Output Admittance Figure 14. Input Impedance Figure 15. Voltage Feedback Ratio #### TYPICAL STATIC CHARACTERISTICS Figure 16. DC Current Gain Figure 17. Collector Saturation Region Figure 18. "ON" Voltages **Figure 19. Temperature Coefficients** 180 200 # **MECHANICAL CASE OUTLINE** SC-75/SOT-416 CASE 463-01 ISSUE G **DATE 07 AUG 2015** STYLE 1: PIN 1. BASE 2. EMITTER STYLE 4: 3. COLLECTOR PIN 1. CATHODE 2. CATHODE 3. ANODE STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. | | | MILLIMETERS | | | INCHES | | | |-----|---|-------------|------|------|--------|----------|-------| | DII | И | MIN | NOM | MAX | MIN | NOM | MAX | | Α | | 0.70 | 0.80 | 0.90 | 0.027 | 0.031 | 0.035 | | A | 1 | 0.00 | 0.05 | 0.10 | 0.000 | 0.002 | 0.004 | | b | | 0.15 | 0.20 | 0.30 | 0.006 | 0.008 | 0.012 | | С | | 0.10 | 0.15 | 0.25 | 0.004 | 0.006 | 0.010 | | D | | 1.55 | 1.60 | 1.65 | 0.061 | 0.063 | 0.065 | | E | | 0.70 | 0.80 | 0.90 | 0.027 | 0.031 | 0.035 | | е | | 1.00 BSC | | | C | 0.04 BSC |) | | L | | 0.10 | 0.15 | 0.20 | 0.004 | 0.006 | 0.008 | | HE | : | 1.50 | 1.60 | 1.70 | 0.060 | 0.063 | 0.067 | #### **GENERIC MARKING DIAGRAM*** XX= Specific Device Code Μ = Date Code = Pb-Free Package #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98ASB15184C | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|---------------|---|-------------|--| | DESCRIPTION: | SC-75/SOT-416 | | PAGE 1 OF 1 | | ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative