MOSFET - Power, Single P-Channel POWERTRENCH®

-40 V, -100 A, 4.4 m Ω

FDD9507L-F085

Features

- Typical $R_{DS(on)} = 3.3 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$, $I_D = -80 \text{ A}$
- Typical $G_{g(tot)}$ = 110 nC at V_{GS} = -10 V, I_D = -80 A
- UIS Capability
- Qualified to AEC Q101
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

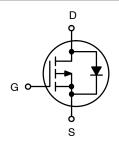
Applications

- Automotive Engine Control
- PowerTrain Management
- Solenoid and Motor Drivers
- Electrical Power Steering
- Integrated Starter/Alternator
- Distributed Power Architectures and VRM
- Primary Switch for 12 V Systems

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Value	Unit
V _{DSS}	Drain-to-Source Voltage	-40	V
V_{GS}	Gate-to-Source Voltage	±16	V
Ι _D	Drain Current – Continuous, (V _{GS} = -10 V) T _C = 25°C (Note 1)	-100	Α
	Pulsed Drain Current, T _C = 25°C	(See Figure 4)	Α
E _{AS}	Single Pulse Avalanche Energy (Note 2)	259	mJ
P _D	Power Dissipation	227	W
	Derate Above 25°C	1.52	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to +175	°C

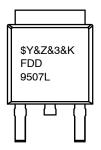
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Current is limited by bondwire configuration.
- 2. Starting T_J = 25°C, L = 0.1 mH, I_{AS} = -72 A, V_{DD} = -40 V during inductor charging and V_{DD} = 0 V during time in avalanche.

ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
-40 V	4.4 mΩ @ –10 V	-100 A



P-CHANNEL MOSFET

DPAK3 (TO-252) CASE 369AS

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code

&3 = Numeric Date Code

&K = Lot Code FDD9507L = Specific Device Code

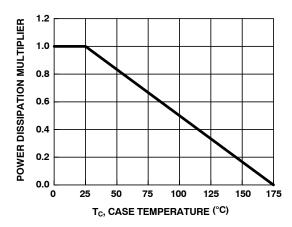
ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	R _{θJC} Thermal Resistance, Junction to Case		°C/W
$R_{ hetaJA}$	R _{θJA} Thermal Resistance, Junction to Ambient (Note 3)		

^{3.} R_{θJA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{θJC} is guaranteed by design, while R_{θJA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	ACTERISTICS					
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-40	-	-	V
I _{DSS}	Drain-to-Source Leakage Current	$V_{DS} = -40 \text{ V}, V_{GS} = 0 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$ $T_{J} = 175^{\circ}\text{C (Note 4)}$	- -	_ _	1	μA mA
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±16 V	-	-	±100	nA
ON CHARA	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	-1	-2	-3	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -80 \text{ A}, T_J = 25^{\circ}\text{C}$	-	4.9	7.2	mΩ
		$V_{GS} = -10 \text{ V}, I_D = -80 \text{ A}$ $T_J = 25^{\circ}\text{C}$ $T_J = 175^{\circ}\text{C (Note 4)}$	- -	3.3 5.3	4.4 7.1	
DYNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = -20 V, V _{GS} = 0 V, f = 1 MHz		6250	-	pF
C _{oss}	Output Capacitance			2640	-	pF
C _{rss}	Reverse Transfer Capacitance			61	-	pF
R_g	Gate Resistance	f = 1 MHz	-	19.3	-	Ω
Q _{g(tot)}	Total Gate Charge	V_{GS} = 0 V to -10 V, V_{DD} = -20 V, I_D = -80 A	-	100	130	nC
Q _{g(-4.5)}	Total Gate Charge	V_{GS} = 0 V to -4.5 V, V_{DD} = -20 V, I_D = -80 A	-	46	-	nC
Q _{g(th)}	Threshold Gate Charge	$V_{GS} = 0 \text{ V to } -2 \text{ V}, V_{DD} = -20 \text{ V}, I_D = -80 \text{ A}$	-	13	-	nC
Q _{gs}	Gate to Source Charge	V _{DD} = -20 V, I _D = -80 A	-	22	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	V _{DD} = -20 V, I _D = -80 A	-	13	-	nC
SWITCHING	CHARACTERISTICS					
t _{on}	Turn-On Time	$V_{DD} = -20 \text{ V}, I_D = -80 \text{ A}, V_{GS} = -10 \text{ V},$	-	-	21	ns
t _{d(on)}	Turn-On Delay	$R_{GEN} = 6 \Omega$	-	10	-	ns
t _r	Rise Time]	-	6	-	ns
t _{d(off)}	Turn-Off Delay			400	-	ns
t _f	Fall Time			132	-	ns
t _{off}	Turn-Off Time			-	710	ns
DRAIN-SOU	RCE DIODE CHARACTERISTICS					
V _{SD}	Source to Drain Diode Forward	I _{SD} = -80 A, V _{GS} = 0 V	_	-0.9	-1.3	V
	Voltage	I _{SD} = -40 A, V _{GS} = 0 V	-	-0.85	-1.2	
t _{rr}	Reverse Recovery Time	I _F = -80 A, dI _{SD} /dt = 100 A/μs	-	87	113	ns
Q _{rr}	Reverse Recovery Charge	1	-	115	150	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{4.} The maximum value is specified by design at $T_J = 175$ °C. Product is not tested to this condition in production.

TYPICAL CHARACTERISTICS

200 CURRENT LIMITED V_{GS} = -10 V BY SILICON -ID, DRAIN CURRENT (A) 160 120 80 **CURRENT LIMITED** BY PACKAGE 40 0 25 100 125 150 175 T_C, CASE TEMPERATURE(°C)

Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current vs.

Case Temperature

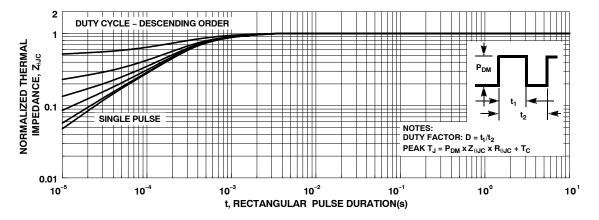


Figure 3. Normalized Maximum Transient Thermal Impedance

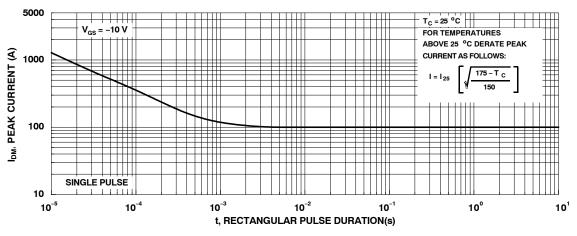


Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS

Figure 5. Forward Bias Safe Operating Area

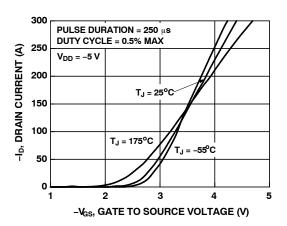


Figure 7. Transfer Characteristics

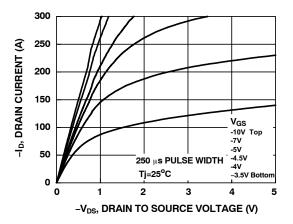


Figure 9. Saturation Characteristics

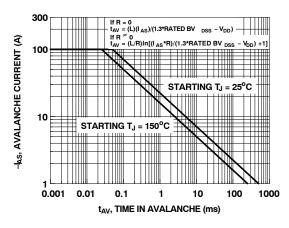


Figure 6. Unclamped Inductive Switching Capability

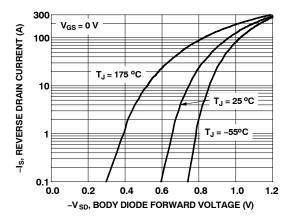


Figure 8. Forward Diode Characteristics

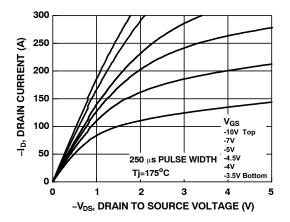


Figure 10. Saturation Characteristics

TYPICAL CHARACTERISTICS

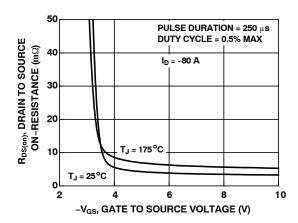


Figure 11. R_{DS(on)} vs. Gate Voltage

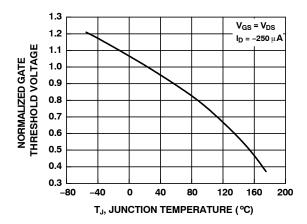


Figure 13. Normalized Gate Threshold Voltage vs. Temperature

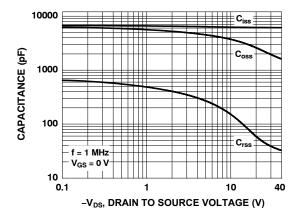


Figure 15. Capacitance vs. Drain to Source Voltage

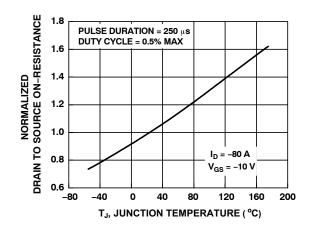


Figure 12. Normalized R_{DS(on)} vs. Junction Temperature

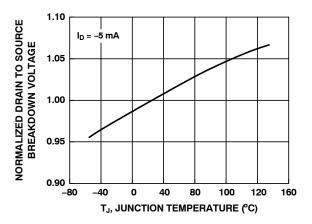


Figure 14. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

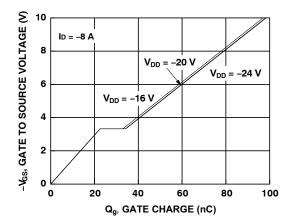
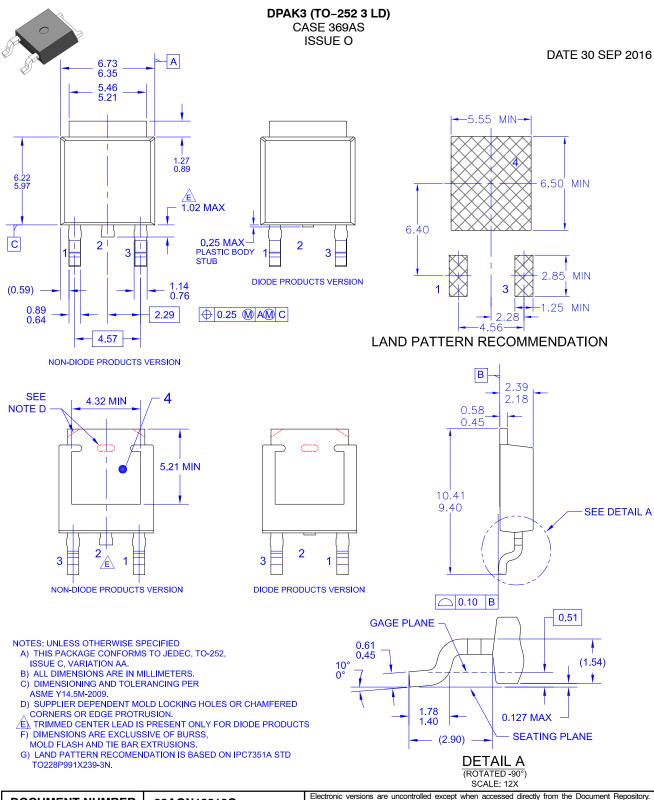



Figure 16. Gate Charge vs. Gate to Source Voltage

ORDERING INFORMATION

Device	Marking	Package	Reel Size	Tape Width	Quantity
FDD9507L-F085	FDD9507L	DPAK3 (TO-252) (Pb-Free / Halogen Free)	13″	16 mm	2500 Units

DOCUMENT NUMBER:	98AON13810G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK3 (TO-252 3 LD)		PAGE 1 OF 1

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative