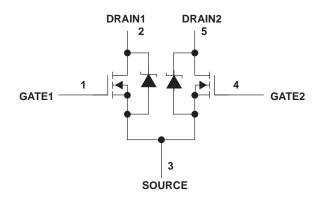
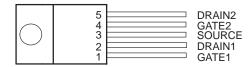
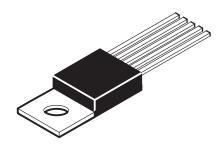
2-CHANNEL COMMON-SOURCE POWER DMOS ARRAY


SLIS017 - SEPTEMBER 1992

- Two 7.5-A Independent Output Channels, Continuous Current Per Channel
- Low r_{DS(on)} . . . 0.09 Ω Typical
- Output Voltage . . . 60 V
- Pulsed Current . . . 15 A Per Channel
- Avalanche Energy . . . 120 mJ


description

The TPIC2202 is a monolithic power DMOS array that consists of two independent N-channel enhancement-mode DMOS transistors connected in a common-source configuration with open drains.


schematic

KC PACKAGE (TOP VIEW)

The tab is electrically connected to SOURCE.

absolute maximum ratings over operating case temperature range (unless otherwise noted)

Drain-source voltage, V _{DS} Gate-source voltage, V _{GS}	
Continuous source-drain diode current	
Pulsed drain current, each output, all outputs on, ID (see Note 1)	15 A
Continuous drain current, each output, all outputs on	7.5 A
Single-pulse avalanche energy, E _{AS} (see Figure 4)	120 mJ
Continuous power dissipation at (or below) T _A = 25°C (see Note 2)	2 W
Continuous power dissipation at (or below) $T_C = 75^{\circ}C$, all outputs on (see Note 2)	31 W
Operating virtual junction temperature range, T _J	40°C to 150°C
Operating case temperature range, T _C	
Storage temperature range, T _{stq}	40°C to 125°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

NOTES: 1. Pulse duration = 10 ms, duty cycle = 6%

2. For operation above 25°C free-air temperature, derate linearly at the rate of 16 mW/°C. For operation above 75°C case temperature, and with all outputs conducting, derate linearly at the rate of 0.42 W/°C. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded.

SLIS017 - SEPTEMBER 1992

electrical characteristics, T_C = 25°C (unless otherwise noted)

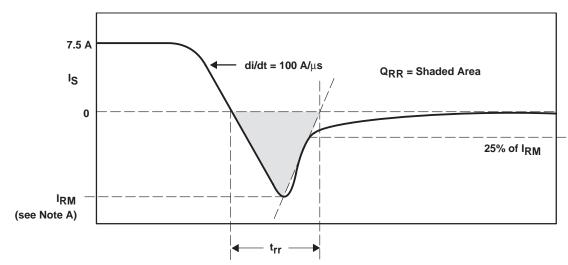
	PARAMETER		TEST COND	ITIONS		MIN	TYP	MAX	UNIT
V _{(BR)DS}	Drain-source breakdown voltage	$I_D = 1 \mu A$,	$_{0} = 1 \mu A, \qquad V_{GS} = 0$			60			V
VTGS	Gate-source threshold voltage	$I_D = 1 \text{ mA},$	$V_{DS} = V_{GS}$			1.2	1.75	2.4	V
V _{DS(on)}	Drain-source on-state voltage	$I_D = 7.5 A,$	V _{GS} = 15 V, See Notes 3 and 4				0.68	0.94	V
	Zero-gate-voltage drain current	V _{DS} = 48 V,	V _{GS} = 0		$T_C = 25^{\circ}C$		0.07	1	_
IDSS					T _C = 125°C		1.3	10	μΑ
IGSSF	Forward gate current, drain short circuited to source	V _{GS} = 20 V,	$V_{DS} = 0$				10	100	nA
IGSSR	Reverse gate current, drain short circuited to source	$V_{GS} = -20 \text{ V},$	V _{DS} = 0				10	100	nA
_	Static drain-source on-state	V _{GS} = 15 V, I _D = 7.5 A,			T _C = 25°C		0.09	0.125	0
rDS(on)	resistance	See Notes 3 an	d 4 and Figures	s 5 and 6	T _C = 125°C		0.15	0.21	Ω
9fs	Forward transconductance	$V_{DS} = 15 V$,	I _D = 5 A, See Notes 3 and 4		2.5	4.7		S	
C _{iss}	Short-circuit input capacitance, common source						490		
C _{oss}	Short-circuit output capacitance, common source	V _{DS} = 25 V,	$V_{GS} = 0$, $f = 300 \text{ kHz}$			285		pF	
C _{rss}	Short-circuit reverse transfer capacitance, common source						90		

NOTES: 3. Technique should limit $T_J - T_C$ to 10°C maximum.

source-drain diode characteristics, $T_{\mbox{\scriptsize C}}$ = 25 $^{\circ}\mbox{\scriptsize C}$

	PARAMETER	TEST CONDITIONS				TYP	MAX	UNIT
VSD	Forward on voltage					0.8	1.3	V
t _{rr}	Reverse recovery time	$I_S = 7.5 A,$ $V_{DS} = 48 V,$	V _{GS} = 0, V. See Figure 1	$di/dt = 100 A/\mu s$,		200		ns
Q_{RR}	Total source-drain diode charge	1 VDS - 40 V,	occ r igure r			1.5		μС

resistive-load switching characteristics, $T_C = 25^{\circ}C$


	PARAMETER	TEST CONDITIONS				TYP	MAX	UNIT	
td(on)	Turn-on delay time					12			
td(off)	Turn-off delay time	-		t _{en} = 10 ns,		100		ns	
t _r	Rise time					43			
tf	Fall time					5			
Qg	Total gate charge					13.6	18		
Qgs	Gate-source charge	V _{DD} = 48 V, See Figure 3		$V_{GS} = 10 V$,		8.3	11	nC	
Q _{gd}	Gate-drain charge	gara a				5.3	7		
L _D	Internal drain inductance					7		nН	
LS	Internal source inductance			•		7		iΠ	

thermal resistance

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	All outputs with equal power			62.5	°C/W
$R_{\theta JC}$	Junction-to-case thermal resistance	All outputs with equal power			2.4	°C/W
		One output dissipating power			3.3	°C/W

^{4.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

PARAMETER MEASUREMENT INFORMATION

NOTE A: I_{RM} = maximum recovery current

Figure 1. Reverse-Recovery-Current Waveforms of Source-Drain Diode

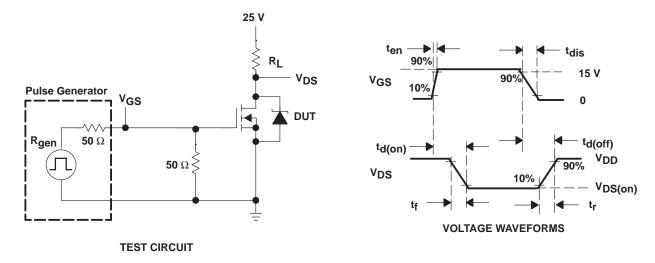


Figure 2. Test Circuit and Voltage Waveforms, Resistive Switching

PARAMETER MEASUREMENT INFORMATION

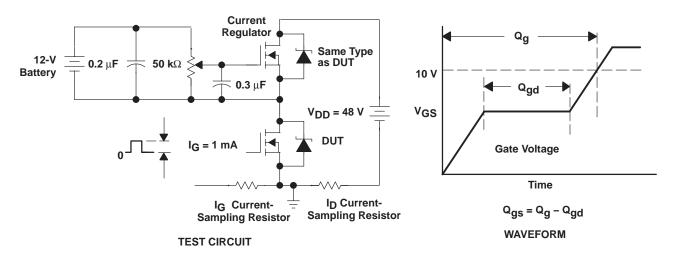
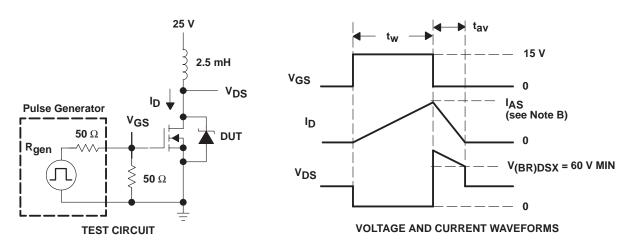



Figure 3. Gate Charge Test Circuit and Waveform

NOTES: A. The pulse generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $Z_O = 50 \Omega$.

B. Input pulse duration (t_W) is increased until peak current $I_{AS} = 7.5 \text{ A}$.

Energy test level is defined as
$$E_{AS} = \frac{I_{AS} \times V_{(BR)DSX} \times t_{av}}{2} = 120 \text{ mJ min.}$$

Figure 4. Single-Pulse Avalanche Energy Test Circuit and Waveforms

TYPICAL CHARACTERISTICS

STATIC DRAIN-SOURCE ON-STATE RESISTANCE

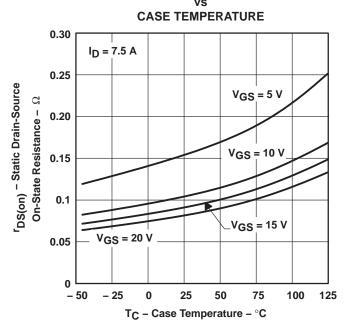


Figure 5

DISTRIBUTION OF FORWARD TRANSCONDUCTANCE

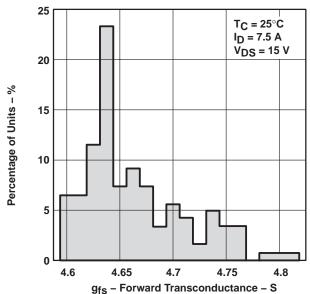


Figure 7

STATIC DRAIN-SOURCE ON-STATE RESISTANCE

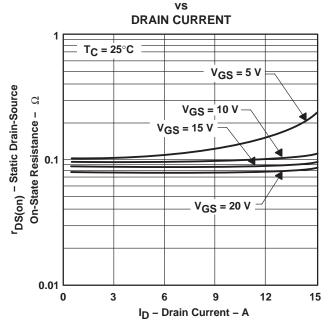


Figure 6

DRAIN CURRENT

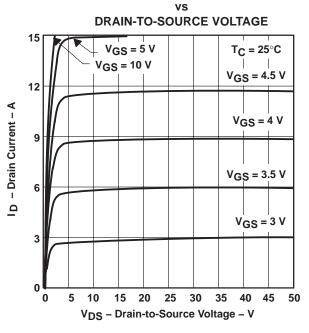


Figure 8

TYPICAL CHARACTERISTICS

GATE-SOURCE THRESHOLD VOLTAGE CASE TEMPERATURE VTGS - Gate-Source Threshold Voltage - V $I_D = 1 \text{ mA}$ 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 75 125 - 50 - 25 25 50 100 T_C - Case Temperature - °C

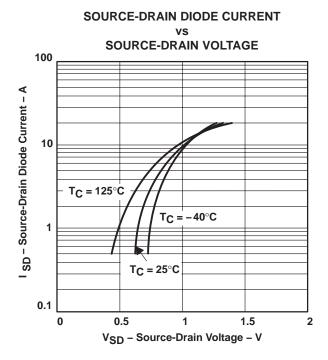


Figure 10

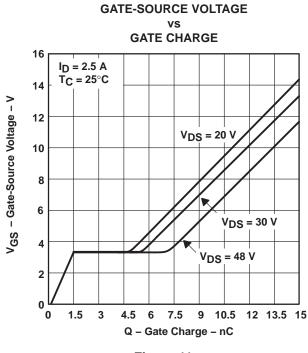


Figure 11

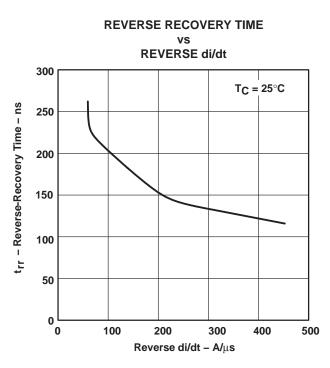


Figure 12

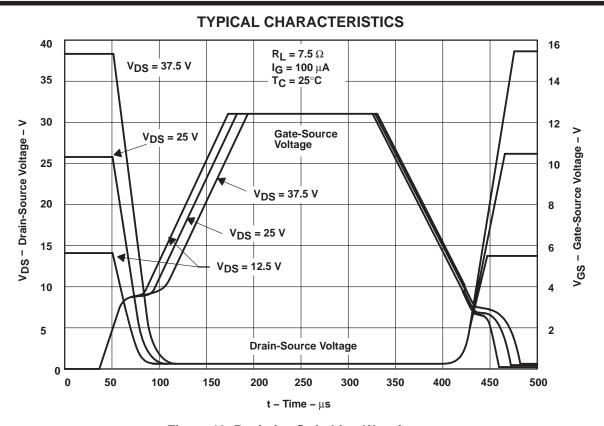


Figure 13. Resistive Switching Waveforms

THERMAL INFORMATION

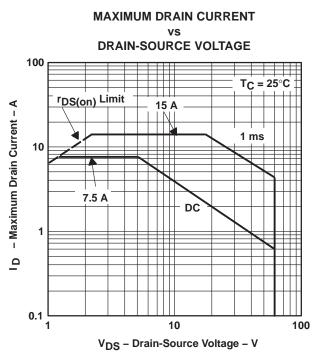


Figure 14

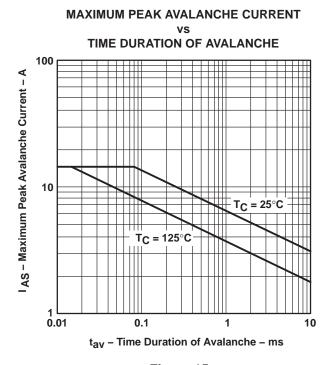


Figure 15

THERMAL INFORMATION

NORMALIZED TRANSIENT THERMAL IMPEDANCE

SQUARE-WAVE PULSE DURATION

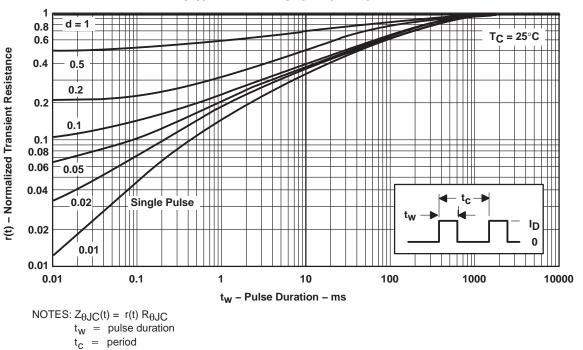


Figure 16

 $d = duty cycle = t_W/t_C$

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com **DLP® Products** Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated