SCAS634 - JULY 28, 1999

 Generates Clocks for Pentium™ III Class Microprocessors 		DL PACKAGE (TOP VIEW)			
 Supports a Single Pentium III Microprocessor 	REF0 [] GND		
 Uses a 14.318 MHz Crystal Input to Generate Multiple Output Frequencies 	V _{DD} 3.3V	3 46] V _{DD} 2.5V] APIC] GND		
 Includes Spread Spectrum Clocking (SSC), 0.34% Downspread for Reduced EMI Performance 	XOUT [GND [PCI0 [5 44 6 43	GND V _{DD} 2.5V CPU_DIV2 GND		
Power Management Control Terminals	PCI1	8 41	V _{DD} 2.5V		
 Low Output Skew and Jitter for Clock Distribution 	V _{DD} 3.3V [PCI2 [] CPU2] GND		
 Operates from Dual 2.5-V and 3.3-V Supplies 	PCI3 [PCI4 [12 37] V _{DD} 2.5V] CPU1		
 Generates the Following Clocks: 3 CPU (2.5 V, 100/133 MHz) 	PCI5 [GND [14 35] CPU0] GND		
- 10 PCI (3.3 V, 33.3 MHz) - 1 CPU/2 (2.5 V, 50/66 MHz)	PCI6 [PCI7 [16 33	V _{DD} 3.3V GND		
 1 APIC (2.5 V, 16.67 MHz) 3 3V66 (3.3 V, 66 MHz) 	V _{DD} 3.3V [PCI8 [18 31	PWR_DWN SPREAD		
 2 REF (3.3 V, 14.318 MHz) 1 48MHz (3.3 V, 48 MHz) 	PCI9 [GND [SEL1 SEL0		
Packaged in 48-Pin SSOP Package	3V66(0) [3V66(1) [V _{DD} 3.3V 48MHz		
 Designed for Use with TI's Direct Rambus™ Clock Generators (CDCR81, CDCR82, CDCR83) 	3V66(2) [V _{DD} 3.3V [23 26] GND] SEL133/100		

description

The CDC922 is a clock synthesizer/driver that generates CPU, CPU_DIV2, 3V66, PCI, APIC, 48MHz, and REF system clock signals to support computer systems with a single Pentium III class microprocessor.

All output frequencies are generated from a 14.318-MHz crystal input. Instead of a crystal, a reference clock input can be provided at the XIN input. Two phase-locked loops (PLLs) are used to generate the host frequencies and the 48-MHz clock frequency. On-chip loop filters and internal feedback eliminate the need for external components.

The host and PCI clock outputs provide low-skew and low-jitter clock signals for reliable clock operation. All outputs have 3-state capability, which can be selected via control inputs SEL0, SEL1, and SEL133/100.

The 48MHz clock can be independently disabled via the control inputs SEL0, SEL1, and SEL133/100. In this state, the 48-MHz PLL is disabled and the 48MHz clock is driven to high impedance to reduce component jitter.

The outputs are either 3.3-V or 2.5-V single-ended CMOS buffers. With a logic high-level on the PWR_DWN terminal, the device operates normally, but when a logical low-level input is applied, the device powers down completely with the outputs in a low-level output state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Intel and Pentium III are trademarks of Intel Corporation. Direct Rambus and Rambus are trademarks of Rambus Inc.

description (continued)

The CPU bus can operate at 100 MHz or 133 MHz. Output frequency selection is done with corresponding setting for SEL133/100 control input. The PCI bus frequency is fixed to 33 MHz.

Since the CDC922 is based on PLL circuitry, it requires a stabilization time to achieve phase lock of the PLL. This stabilization time is required after power up or after changes to the SEL inputs are made. With use of an external reference clock, this signal must be fixed-frequency and fixed-phase before the stabilization time starts.

Function Tables SELECT FUNCTIONS

INPUTS						OUTPUTS	3				
SEL133/ 100	SEL1	SEL0	CPU	CPU_DIV2	3V66	PCI	48MHz	REF	APIC	FUNCTION	
L	L	L	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	3-state	
L	L	Н	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Reserved	
L	Н	L	100 MHz	50 MHz	66 MHz	33 MHz	Hi-Z	14.318 MHz	16.67 MHz	48-MHz PLL off	
L	Н	Н	100 MHz	50 MHz	66 MHz	33 MHz	48 MHz	14.318 MHz	16.67 MHz	48-MHz PLL on	
Н	L	L	TCLK/2	TCLK/4	TCLK/4	TCLK/8	TCLK/2	TCLK	TCLK/16	Test	
Н	L	Н	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Reserved	
Н	Н	L	133 MHz	66 MHz	66 MHz	33 MHz	Hi-Z	14.318 MHz	16.67 MHz	48-MHz PLL off	
Н	Н	Н	133 MHz	66 MHz	66 MHz	33 MHz	48 MHz	14.318 MHz	16.67 MHz	48-MHz PLL on	

ENABLE FUNCTIONS

INPUTS		OUTPUTS					INTER	NAL
PWR_DWN	CPU	CPU_DIV2	APIC	3V66	PCI	REF, 48MHz	CRYSTAL	VCOs
L	L	L	L	L	L	L	Off	Off
Н	On	On	On	On	On	On	On	On

OUTPUT BUFFER SPECIFICATIONS

BUFFER NAME	V _{DD} RANGE (V)	IMPEDANCE (Ω)	BUFFER TYPE
CPU, CPU_DIV2, APIC	2.375 – 2.625	13.5 – 45	TYPE 1
48MHz, REF	3.135 – 3.465	20 – 60	TYPE 3
PCI, 3V66	3.135 – 3.465	12 – 55	TYPE 5

CDC922 133-MHz CLOCK SYNTHESIZER/DRIVER FOR PC MOTHERBOARDS WITH 3-STATE OUTPUTS SCAS634 – JULY 28, 1999

Terminal Functions

TERM	INAL	1/0	DEGODIPTION
NAME	NO.	I/O	DESCRIPTION
3V66 [0-2]	21–23	0	3.3 V, Type 5, 66-MHz clock outputs
48MHz	27	0	3.3 V, Type 3, 48-MHz clock output
APIC	46	0	2.5 V, Type 2, APIC clock output at 16.67 MHz
CPU [0-2]	36, 37, 40	0	2.5 V, Type 1, CPU clock outputs
CPU_DIV2	43	0	2.5 V, Type 1, CPU_DIV2 clock output
GND	6, 14, 20, 26, 33, 35, 39, 42, 45, 48		Ground for PCI, 3V66, 48MHz, CPU, CPU_DIV2, APIC, REF [0-1] outputs and CORE
PCI [0-9]	7, 8, 10–13, 15, 16, 18, 19	0	3.3 V, Type 5, 33-MHz PCI clock outputs
PWR_DWN	32	I	Power down for complete device with outputs forced low
REF0, REF1	1, 2	0	3.3 V, Type 3, 14.318-MHz reference clock outputs
SEL0, SEL1	29, 30	I	LVTTL level logic select terminals for function selection
SEL133/100	25	I	LVTTL level logic select terminal for enabling 100/133 MHz
SPREAD	31	I	Disables SSC function
V _{DD} 2.5V	38, 41, 44, 47		Power for CPU, CPU_DIV2, and APIC outputs
V _{DD} 3.3V	3, 9, 17, 24, 28, 34		Power for the REF, PCI, 3V66, 48MHz outputs and CORE
XIN	4	I	Crystal input – 14.318 MHz
XOUT	5	0	Crystal output – 14.318 MHz

spread spectrum clock (SSC) implementation for CDC922

Simultaneously switching at fixed frequency generates a significant power peak at the selected frequency, which in turn will cause EMI disturbance to the environment. The purpose of the internal frequency modulation of the CPU–PLL allows to distribute the energy to many different frequencies which reduces the power peak. A typical characteristic for a single frequency spectrum and a frequency modulated spectrum is shown in Figure 1.

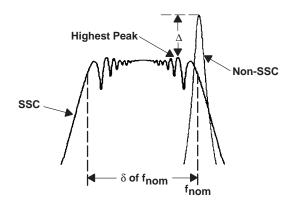


Figure 1. Frequency Power Spectrum With and Without the Use of SSC

The modulated spectrum has its distribution left hand to the single frequency spectrum which indicates a "down-spread modulation".

The peak reduction depends on the modulation scheme and modulation profile. System performance and timing requirements are the limiting factors for actual design implementations. The implementation was driven to keep the average clock frequency closed to its upper specification limit. The modulation amount was set to approximately -0.34% (compared to -0.5% on the CDC921).

In order to allow a downstream PLL to follow the frequency modulated signal, the bandwidth of the modulation signal is limited in order to minimize SSC induced tracking skew jitter. The ideal modulation profile used for CDC922 is shown in Figure 2.

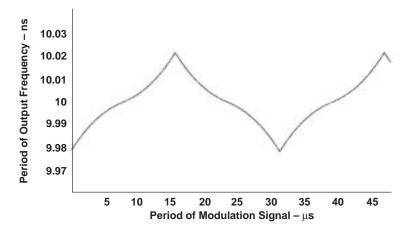
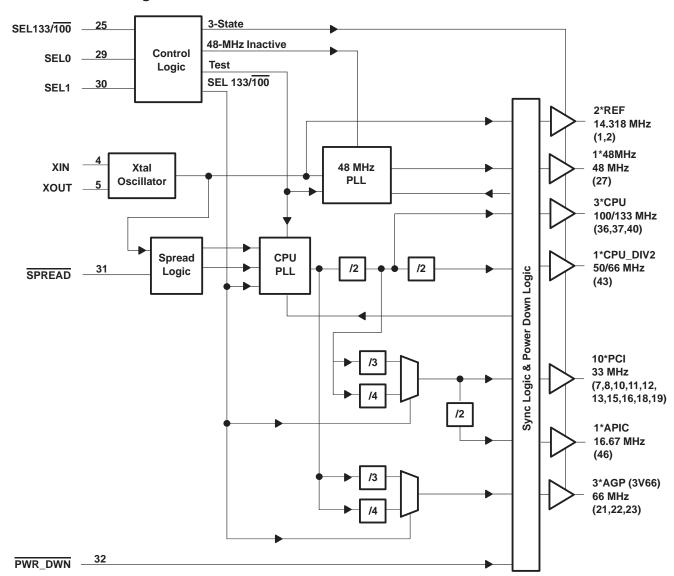



Figure 2. SSC Modulation Profile

functional block diagram

SCAS634 -JULY 28, 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

NOTE 1: The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATNG	DERATING FACTOR [†] ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DL	1315.7 mW	10.53 mW/°C	842.1 mW	684.2 mW

[†] This is the inverse of the traditional junction-to-case thermal resistance (R_{θJA}) and uses a board-mounted device at 95°C/W.

recommended operating conditions (see Note 2)

		MIN	иом†	MAX	UNIT	
Supply voltage Van	3.3 V	3.135		3.465	V	
Supply voltage, V _{DD}	2.5 V	2.375		2.625	V	
High-level input voltage, V _{IH}		2		V _{DD} + 0.3 V	V	
Low-level input voltage, V _{IL}		GND – 0.3 V		0.8	V	
Input voltage, V _I		0		V_{DD}	V	
	CPUx, CPU_DIV2			-12	mA	
High lovel output ourront lav	APIC			-12		
High-level output current, IOH	48MHz, REFx			-14		
	PCIx, PCI_F, 3V66x			-18		
	CPUx, CPU_DIV2			12		
Low lovel output ourrent Lo	APIC			12	A	
Low-level output current, IOL	48MHz, REFx			9	mA	
	PCIx, PCI_F, 3V66x			12		
Reference frequency, f(XTAL) [‡]	Test mode		130		MHz	
Crystal frequency, f(XTAL)§	Normal mode	13.8	14.318	14.8	MHz	
Operating free-air temperature, TA		0		85	°C	

NOTE 2: Unused inputs must be held high or low to prevent them from floating.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[†] All nominal values are measured at their respective nominal V_{DD} values.

[‡] Reference frequency is a test clock driven on the XIN input during the device test mode and normal mode. In test mode, XIN can be driven externally up to f_(XTAL) = 130 MHz. If XIN is driven externally, XOUT is floating.

[§] This is a series fundamental crystal with $f_{O} = 14.31818$ MHz.

SCAS634 -JULY 28, 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS	MIN	TYP†	MAX	UNIT
٧ıĸ	Input clamp voltage		$V_{DD} = 3.135 \text{ V},$	I _I = -18 mA			-1.2	V
R _I	Input resistance	XIN, XOUT	$V_{DD} = 3.465 \text{ V},$	$V_{I} = V_{DD} - 0.5 V$	80		350	kΩ
		XOUT	$V_{DD} = 3.135 \text{ V},$	$V_{I} = V_{DD} - 0.5 V$		20	50	mA
l _{IH}	High-level input current	SEL0, SEL1, SPREAD	V _{DD} = 3.465 V,	$V_I = V_{DD}$		<10	10	μΑ
		PWR_DWN	V _{DD} = 3.465 V,	$V_I = V_{DD}$		<10	10	μΑ
		SEL133/100	V _{DD} = 3.465 V,	$V_I = V_{DD}$		<10	10	μΑ
		XOUT	V _{DD} = 3.135 V,	V _I = 0 V		-2	- 5	mA
IIL	Low-level input current	SEL0, SEL1, SPREAD	V _{DD} = 3.465 V,	V _I = GND		<10	-10	μΑ
		PWR_DWN	V _{DD} = 3.465 V,	V _I = GND		<10	-10	μΑ
		SEL133/100	V _{DD} = 3.465 V,	V _I = GND		<10	-10	μΑ
IOZ	High-impedance-state output curr	ent	$ V_{DD} = \max,$	$V_O = V_{DD}$ or GND			±10	μΑ
			$\frac{V_{DD} = 2.625}{PWR_DWN} = low$	All outputs = low,		<20	100	μΑ
	Supply current		$V_{DD} = 2.625 V$,	All outputs = high		<20	100	μΑ
IDD	Зиррку сипен		$\frac{V_{DD} = 3.465 \text{ V},}{\text{PWR}_{DWN} = \text{low}}$	All outputs = low,		<50	200	μΑ
			V _{DD} = 3.465 V,	All outputs = high		12	37	mA
l== (=)	High-impedance-state supply		V _{DD} = 2.625 V				1.4	mA
IDD(Z)	current		V _{DD} = 3.465 V				30	IIIA
	Dynamic IDD		$C_L = 20 pF$,	V _{DD} = 3.465 V		114	156	mA
	Бупанне прр		CPU = 133 MHz	V _{DD} = 2.625 V		44	60	111/4
Cl	Input capacitance		V _{DD} = 3.3 V,	$V_I = V_{DD}$ or GND	3.3		5.8	pF
	Crystal terminal capacitance		$V_{DD} = 3.3 \text{ V},$	V _I = 0.3 V	18	18.5	22.5	pF

[†] All typical values are measured at their respective nominal V_{DD} values.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

CPUx, CPU_DIV2, APIC (Type 1)

	PARAMETER		TEST CO	NDITIONS	MIN	TYP [†]	MAX	UNIT
VOH	VOH High-level output voltage		V _{DD} = min to max,	$I_{OH} = -1 \text{ mA}$	VDD – 0.1 V			٧
			V _{DD} = 2.375 V,	I _{OH} = -12 mA	2			
V/01	Low-level output voltage		V _{DD} = min to max,	I _{OL} = 1 mA			0.1	V
VOL	V _{OL} Low-level output voltage		V _{DD} = 2.375 V,	I_{OL} = 12 mA		0.18	0.4	٧
	IOH High-level output current		V _{DD} = 2.375 V,	V _O = 1 V	-26	-42		
ІОН			$V_{DD} = 2.5 V,$	V _O = 1.25 V		-46		mA
			$V_{DD} = 2.625 V$,	V _O = 2.375 V		-16	-27	
			$V_{DD} = 2.375 V$,	V _O = 1.2 V	27	57		
lOL	Low-level output current		$V_{DD} = 2.5 V,$	V _O = 1.25 V		63		mA
			$V_{DD} = 2.625 V$,	V _O = 0.3 V		23	43	
CO	O Output capacitance		$V_{DD} = 3.3 \text{ V},$	$V_O = V_{DD}$ or GND	5.8		8.5	pF
70	Outration advance	High state	$V_{O} = 0.5 V_{DD}$	Vo/IoH	13.5	27	45	Ω
ZO	Output impedance	Low state	$V_{O} = 0.5 V_{DD}$	V _O /I _{OL}	13.5	20	45	52

[†] All typical values are measured at their respective nominal V_{DD} values.

48MHz, REFx (Type 3)

	PARAMETER		TEST CO	NDITIONS	MIN	TYP [†]	MAX	UNIT
Vон	VOH High-level output voltage		V _{DD} = min to max,	$I_{OH} = -1 \text{ mA}$	VDD – 0.1 V			V
			V _{DD} = 3.135 V,	I _{OH} = -14 mA	2.4			
Val	Low level output voltage	$V_{DD} = min to max,$	I _{OL} = 1 mA			0.1	V	
VOL	VOL Low-level output voltage		$V_{DD} = 3.135 V$,	$I_{OL} = 9 \text{ mA}$		0.18	0.4	V
			$V_{DD} = 3.135 V,$	V _O = 1 V	-27	-41		
ЮН	IOH High-level output current		$V_{DD} = 3.3 V$,	V _O = 1.65 V		-41		mA
			$V_{DD} = 3.465 \text{ V},$	V _O = 3.135 V		-12	-23	
			$V_{DD} = 3.135 V$,	V _O = 1.95 V	29	50		
lOL	Low-level output current		$V_{DD} = 3.3 V,$	V _O = 1.65 V		53		mA
			$V_{DD} = 3.465 V,$	$V_0 = 0.4 V$		20	37	
CO	C _O Output capacitance		$V_{DD} = 3.3 \text{ V},$	$V_O = V_{DD}$ or GND	4.5		7	pF
70	Output impedance	High state	$V_{O} = 0.5 V_{DD}$	V _O /I _{OH}	20	40	60	Ω
20	Z _O Output impedance	Low state	$V_{O} = 0.5 V_{DD}$	V _O /I _{OL}	20	31	60	52

[†] All typical values are measured at their respective nominal V_{DD} values.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

PCIx, 3V66x (Type 5)

	PARAMETER		TEST CO	NDITIONS	MIN	TYP [†]	MAX	UNIT	
VOH	VOH High-level output voltage		V _{DD} = min to max,	$I_{OH} = -1 \text{ mA}$	VDD – 0.1 V			V	
			V _{DD} = 3.135 V,	$I_{OH} = -18 \text{ mA}$	2.4				
V/a.	Low-level output voltage		$V_{DD} = min to max,$	I _{OL} = 1 mA			0.1	V	
VOL	Low-level output voltage		V _{DD} = 3.135 V,	I _{OL} = 12 mA		0.15	0.4	V	
			$V_{DD} = 3.135 \text{ V},$	V _O = 1 V	-33	-53			
loH	IOH High-level output current		$V_{DD} = 3.3 \text{ V},$	V _O = 1.65 V		-53		mA	
			V _{DD} = 3.465 V,	V _O = 3.135 V		-16	-33		
			V _{DD} = 3.135 V,	V _O = 1.95 V	30	67			
lOL	Low-level output current		$V_{DD} = 3.3 \text{ V},$	V _O = 1.65 V		70		mA	
			V _{DD} = 3.465 V,	V _O = 0.4 V		27	49		
CO	Output capacitance		$V_{DD} = 3.3 \text{ V},$	$V_O = V_{DD}$ or GND	4.5		7.5	pF	
7-	Output impedance	High state	$V_{O} = 0.5 V_{DD}$	Vo/IoH	12	31	55		
ZO	Output impedance	Low state	$V_{O} = 0.5 V_{DD}$	V _O /I _{OL}	12	24	55	Ω	

[†] All typical values are measured at their respective nominal V_{DD} values.

switching characteristics, V_{DD} = 3.135 V to 3.465 V, T_A = 0°C to 85°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Overshoot/undershoot		GND – 0.7 V		V _{DD} + 0.7 V	V
	Ring back		V _{IL} – 0.1 V	V _{IL} – 0.1 V V _{IH} + 0.1		V
	Stabilization time, PWR_DWN to PCIx	f(CPU) = 133 MHz		0.05	3	ms
t _{dis3}	Disable time, PWR_DWN to PCIx	f(CPU) = 133 MHz		50		ns
	Stabilization time, PWR_DWN to CPUx	f _(CPU) = 133 MHz		0.03	3	ms
t _{dis4}	Disable time, PWR_DWN to CPUx	f _(CPU) = 133 MHz		50		ns
	Stabilization time [†]	After SEL1, SEL0			3	ma
	Stabilization time	After power up			3	ms

[†] Stabilization time is the time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. In order for phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at X1. Until phase lock is obtained, the specifications for propagation delay and skew parameters given in the switching characteristics tables are not applicable. Stabilization time is defined as the time from when VDD achieves its nominal operating level until the output frequency is stable and operating within specification.

SCAS634 -JULY 28, 1999

switching characteristics, V_{DD} = 2.375 V to 2.625 V, T_A = 0°C to 85°C (continued)

CPUx

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{en1}	Output enable time	SEL133/100	CPUx	f(CPU) = 100 or 133MHz		6	10	ns
t _{dis1}	Output disable time	SEL133/100	CPUx	f(CPU) = 100 or 133MHz		8	10	ns
+.	CDLL clock povied [†]			f(CPU) = 100 MHz	10	10.04	10.2	ns
t _C	CPU clock period [†]			f(CPU) = 133 MHz	7.5	7.53	7.7	ns
	Cycle to cycle jitter			f _(CPU) = 100 or 133MHz			250	ps
	Duty cycle			f(CPU) = 100 or 133MHz	45		55	%
t _{sk(o)}	CPU bus skew	CPUx	CPUx	f _(CPU) = 100 or 133MHz		50	175	ps
t _{sk(p)}	CPU pulse skew	CPUn	CPUn	f _(CPU) = 100 or 133MHz			2.2	ns
t(off)	CPU clock to APIC clock offset, rising edge	е			1.5	2.8	4	ns
t(off)	CPU clock to 3V66 clock offset, rising edge	е			0	0.75	1.5	ns
	Pulse duration width, high			f(CPU) = 100 MHz	2.6	4.3		ns
tw1	Fuise duration width, mgn			f _(CPU) = 133 MHz	1.4	3.7		115
	Pulse duration width, low			f _(CPU) = 100 MHz	2.8	4.3		ns
tw2	72 Fulse duration width, low			f _(CPU) = 133 MHz	1.7	4		115
t _r	Rise time		·	$V_0 = 0.4 \text{ V to } 2.0 \text{ V}$	0.4	1.5	2.2	ns
t _f	Fall time			V _O = 0.4 V to 2.0 V	0.4	1.4	2	ns

[†] The average over any 1-μs period of time is greater than the minimum specified period.

CPU_DIV2

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
t _{en1}	Output enable time	SEL133/100	CPU_DIV2	f _(CPU) = 100 or 133MHz		6	10	ns	
^t dis1	Output disable time	SEL133/100	CPU_DIV2	f _(CPU) = 100 or 133MHz		8	10	ns	
	CPU_DIV2 clock periodT			f _(CPU) = 100 MHz	20	20.08	20.4	ns	
t _C	CFO_DIV2 clock period i	f _(CPU) = 133 MHz	15	15.06	15.3	ns			
	Cycle to cycle jitter			f _(CPU) = 100 or 133MHz			250	ps	
	Duty cycle			f _(CPU) = 100 or 133MHz	45		55	%	
tsk(p)	CPU_DIV2 pulse skew			f _(CPU) = 100 or 133MHz			1.6	ns	
	Pulse duration width high			f _(CPU) = 100 MHz	7.1			no	
t _{w1}	Pulse duration width, high			f _(CPU) = 133 MHz	4.7			ns	
	Pulse duration width low			f _(CPU) = 100 MHz	7.3	8.9		ns	
t _{w2}	ruise duration width, low	Pulse duration width, low				6.6		115	
t _r	Rise time			V _O = 0.4 V to 2.0 V	0.4	1.4	2	ns	
t _f	Fall time			V _O = 0.4 V to 2.0 V	0.4	1.3	1.8	ns	

[†] The average over any 1-μs period of time is greater than the minimum specified period.

SCAS634 -JULY 28, 1999

switching characteristics, V_{DD} = 2.375 V to 2.625 V, T_A = 0°C to 85°C (continued)

APIC

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{en1}	Output enable time	SEL133/100	APIC	f(APIC) = 16.67 MHz		6	10	ns
^t dis1	Output disable time	SEL133/100	APIC	f(APIC) = 16.67 MHz		8	10	ns
t _C	APIC clock period [†]			f _(APIC) = 16.67 MHz	60	60.24	60.6	ns
	Cycle to cycle jitter			f _(CPU) = 100 or 133 MHz			400	ps
	Duty cycle			f(APIC) = 16.67 MHz	45		55	%
t _{sk(p)}	APIC pulse skew			f(APIC) = 16.67 MHz			3	ns
t(off)	APIC clock to CPU clock offset, rising edge	APIC	CPUx		-1.5		-4	ns
t _{w1}	Pulse duration width, high		f(APIC) = 16.67 MHz	25.5	28		ns	
t _{w2}	Pulse duration width, low		f _(APIC) = 16.67 MHz	25.3	29.2		ns	
t _r	Rise time			V _O = 0.4 V to 2 V	0.4	1.6	2.1	ns
t _f	Fall time			V _O = 0.4 V to 2 V	0.4	1.2	1.7	ns

[†] The average over any 1-µs period of time is greater than the minimum specified period.

switching characteristics, V_{DD} = 3.135 V to 3.465 V, T_A = 0°C to 85°C

3V66

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{en1}	Output enable time	SEL133/100	3V66x	f _(3V66) = 66 MHz		6	10	ns
^t dis1	Output disable time	SEL133/100	3V66x	f _(3V66) = 66 MHz		8	10	ns
t _C	3V66 clock period [†]			f _(3V66) = 66 MHz	15	15.06	15.3	ns
	Cycle to cycle jitter			f _(CPU) = 100 or 133 MHz			400	ps
	Duty cycle			f _(3V66) = 66 MHz	45		55	%
t _{sk(o)}	3V66 bus skew	3V66x	3V66x	f _(3V66) = 66 MHz		50	150	ps
t _{sk(p)}	3V66 pulse skew	3V66n	3V66n	f _(3V66) = 66 MHz			2.6	ns
t(off)	3V66 clock to CPU clock offset	3V66x	CPUx		0	-0.75	-1.5	ns
t(off)	3V66 clock to PCI clock offset, ris	sing edge			1.2	2.1	3	ns
t _{w1}	Pulse duration width, high		f _(3V66) = 66 MHz	5.2			ns	
t _{w2}	Pulse duration width, low			f _(3V66) = 66 MHz	5			ns
t _r	Rise time			V _O = 0.4 V to 2 V	0.5	1.5	2	ns
t _f	Fall time			V _O = 0.4 V to 2 V	0.5	1.5	2	ns

[†] The average over any 1-µs period of time is greater than the minimum specified period.

SCAS634 -JULY 28, 1999

switching characteristics, V_{DD} = 3.135 V to 3.465 V, T_A = 0°C to 85°C (continued)

48MHz

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{en1}	Output enable time	SEL133/100	48MHz	f _(48MHz) = 48 MHz		6	10	ns
^t dis1	Output disable time	SEL133/100	48MHz	f _(48MHz) = 48 MHz		8	10	ns
t _C	48MHz clock period [†]			f _(48MHz) = 48 MHz	20.5	20.83	21.1	ns
	Cycle to cycle jitter			f _(CPU) = 100 or 133 MHz			500	ps
	Duty cycle		_	f _(48MHz) = 48 MHz	45		55	%
tsk(p)	48MHz pulse skew	48MHz	48MHz	f _(48MHz) = 48 MHz			3	ns
t _{w1}	Pulse duration width, high			f _(48MHz) = 48 MHz	7.8			ns
t _{w2}	Pulse duration width, low			f _(48MHz) = 48 MHz	7.8			ns
t _r	Rise time			V _O = 0.4 V to 2 V	1	2.1	2.8	ns
t _f	Fall time			$V_0 = 0.4 \text{ V to 2 V}$	1	1.9	2.8	ns

[†] The average over any 1-μs period of time is greater than the minimum specified period.

REF

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{en1}	Output enable time	SEL133/100	REFx	f _(REF) = 14.318 MHz		6	10	ns
^t dis1	Output disable time	SEL133/100	REFx	f _(REF) = 14.318 MHz		8	10	ns
t _C	REF clock period [†]			f(REF) = 14.318 MHz		69.84		ns
	Cycle to cycle jitter			f(CPU) = 100 or 133 MHz			700	ps
	Duty cycle			f(REF) = 14.318 MHz	45		55	%
tsk(o)	REF bus skew	REFx	REFx	f(REF) = 14.318 MHz		150	250	ps
tsk(p)	REF pulse skew	REFn	REFn	f _(REF) = 14.318 MHz			2	ns
t _{w1}	Pulse duration width, high			f _(REF) = 14.318 MHz	26.2	32.7		ns
t _{w2}	Pulse duration width, low		f(REF) = 14.318 MHz	26.2	31.2		ns	
t _r	Rise time	•		V _O = 0.4 V to 2 V	1	2	2.8	ns
tf	Fall time			V _O = 0.4 V to 2 V	1	1.9	2.8	ns

[†] The average over any 1-μs period of time is greater than the minimum specified period.

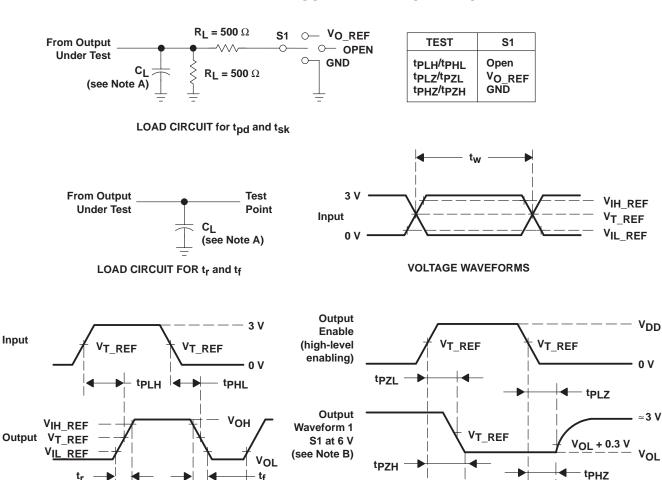
SCAS634 -JULY 28, 1999

switching characteristics, V_{DD} = 3.135 V to 3.465 V, T_A = 0°C to 85°C (continued)

PCI

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ten1	Output enable time	SEL133/100	PCIx	f _(PCI) = 33 MHz		6	10	ns
tdis1	Output disable time	SEL133/100	PCIx	f _(PCI) = 33 MHz		8	10	ns
t _C	PCIx clock period [†]			f _(PCI) = 33 MHz	30	30.12	30.5	ns
	Cycle to cycle jitter			f _(CPU) = 100 or 133 MHz			300	ps
	Duty cycle			f _(PCI) = 33 MHz	45		55	%
tsk(o)	PCIx bus skew	PCIx	PCIx	f(PCI) = 33 MHz		70	300	ps
t _{sk(p)}	PCIx pulse skew	PCIn	PCIn	f _(PCI) = 33 MHz			4	ns
t(off)	PCIx clock to 3V66 clock offset				-1.2		-3	ns
t _{w1}	Pulse duration width, high		f(PCI) = 33 MHz	12			ns	
t _{w2}	Pulse duration width, low		f _(PCI) = 33 MHz	12			ns	
t _r	Rise time			V _O = 0.4 V to 2 V	0.5	1.6	2	ns
t _f	Fall time			V _O = 0.4 V to 2 V	0.5	1.5	2	ns

[†] The average over any 1-µs period of time is greater than the minimum specified period.


Input

tw_high

tw_low

VOLTAGE WAVEFORMS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance. C_L = 20 pF (CPUx, APIC, 48MHz, REF), C_L = 30 pF (PCIx)

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

Output

Waveform 2

(see Note B)

S1 at GND

V_{OH} – 0.3 V

≈0 V

VT REF

VOLTAGE WAVEFORMS

- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 14.318 MHz, Z_O = 50 Ω , $t_r \leq$ 2.5 ns, $t_f \le 2.5 \text{ ns.}$
- D. The outputs are measured one at a time with one transition per measurement.

	PARAMETER	3.3-V INTERFACE	2.5-V INTERFACE	UNIT
V _{IH_REF}	High-level reference voltage	2.4	2	V
VIL_REF	Low-level reference voltage	0.4	0.4	V
V _{T_REF}	Input Threshold reference voltage	1.5	1.25	V
VO_REF	Off-state reference voltage	6	4.6	V

Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

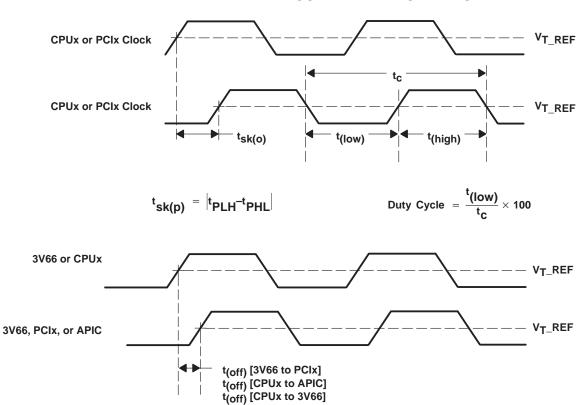
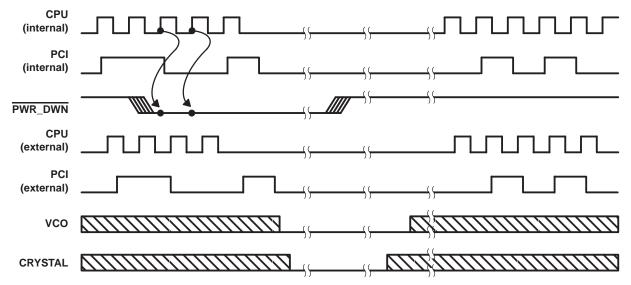
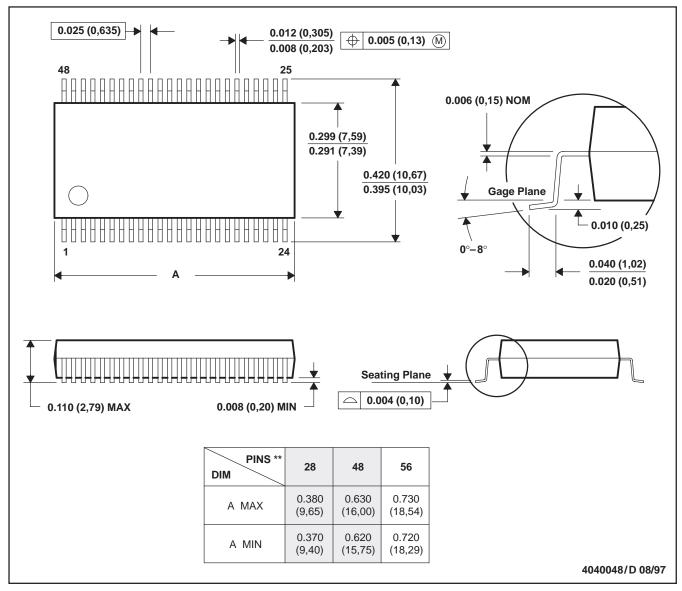



Figure 4. Waveforms for Calculation of Skew, Offset, and Jitter

NOTE A: Shaded sections on the VCO and Crystal waveforms indicate that the VCO and crystal oscillators are active and there is a valid clock.


Figure 5. Power-Down Timing

MECHANICAL DATA

DL (R-PDSO-G**)

48-PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PACKAGE OPTION ADDENDUM

16-Dec-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CDC922DL	OBSOLETE	SSOP	DL	48	TBD	Call TI	Call TI
CDC922DLR	OBSOLETE	SSOP	DL	48	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated