NLAS3257A

Mux / Demux Analog Switch

The NLAS3257A Mux / Demux Analog Switch is an advanced high-speed single pole double throw (SPDT) analog switch in ultra-small footprint.

Features

- High Speed: t $_{\text {PD }}=0.25 \mathrm{~ns}(\mathrm{Max}) @ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{ON}}: 7.5 \Omega$, Typ @ $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$
- $\mathrm{C}_{\mathrm{ON}}: 7.5 \mathrm{pF}$, Typ @ $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- V_{CC} Range: 1.65 V to 4.5 V
- Ultra-Small $1 \times 1 \mathrm{~mm}$ Package
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Mobile Phones, PDAs, Camera

Figure 1. UDFN6 (Top View)

Figure 2. Logic Diagram

Function Table

Input S	Function
L	$\mathrm{A}=\mathrm{B} 0$
H	$\mathrm{A}=\mathrm{B} 1$

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com
UDFN6
MARKING
DIAGRAM

ORDERING INFORMATION
See detailed ordering and shipping information on page 6 of this data sheet.

NLAS3257A

Table 1. MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{V}_{\text {IN }}$	Control Input Voltage (S Pin)	-0.5 to +5.5	V
$\mathrm{V}_{1 / \mathrm{O}}$	Switch Input / Output Voltage (A, B0, B1 Pins)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	Control Pin DC Input Diode Current (S Pin) $\mathrm{V}_{\text {IN }}<$ GND	-50	mA
IOK	Switch I/O Port DC Diode Current (A, B0, B1 Pins) $\quad \mathrm{V}_{\mathrm{I} / \mathrm{O}}<\mathrm{GND}$ or $\mathrm{V}_{\mathrm{I} / \mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	± 50	mA
I_{0}	On-State Switch Current	± 128	mA
	Continuous Current Through V_{CC} or GND	± 150	mA
I_{CC}	DC Supply Current per Supply Pin	± 150	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 150	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Note 1)	466	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$P_{\text {D }}$	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$ (Note 1)	269	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >6000 \\ >200 \\ >2000 \end{gathered}$	V
ILATCHUP	Latchup Performance Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 5)	± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow.
2. Tested to EIA/ JESD22-A114-A
3. Tested to EIA/ JESD22-A115-A
4. Tested to JESD22-C101-A
5. Tested to EIA / JESD78.

Table 2. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Positive DC Supply Voltage	1.65	4.5	V
$\mathrm{~V}_{\mathrm{I}}$	Control Pin Input Voltage (S Pin)	0	4.5	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Switch Input/ Output Voltage (A, B0, B1 Pins)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Free-Air Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate	Control Input Switch $/ / \mathrm{O}$	0 0	20 DC

[^0]Table 3. DC ELECTRICAL CHARACTERISTICS (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Symbol	Parameter	Test Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
V_{IH}	Control Input, High Voltage (S Pin)		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$	$\begin{gathered} \hline 0.95 \\ 1.0 \\ 1.25 \end{gathered}$			V
V_{IL}	Control Input, Low Voltage (S Pin)		$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$			$\begin{aligned} & 0.3 \\ & 0.4 \\ & 0.5 \end{aligned}$	V
$\mathrm{I}_{\text {IN }}$	Control Input, Leakage Current (S Pin)	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$	1.65-4.5		± 0.5	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {B0/B1_OFF }}$	Off State Leakage Current (B0/B1 Pins)	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{BO}} \text { and } \mathrm{V}_{\mathrm{B} 1}=0.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{A}}=4 \mathrm{~V} \end{gathered}$	4.5		± 20	± 100	nA
$\mathrm{I}_{\text {_ }}$ ON	On State Leakage Current (A Pin)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $V_{B 0}=0.3 \mathrm{~V}$ or 4 V with $\mathrm{V}_{\mathrm{B} 1}=$ Floating or $\mathrm{V}_{\mathrm{B} 1}=0.3 \mathrm{~V}$ or 4 V with $\mathrm{V}_{\mathrm{B} 0}=$ Floating $\mathrm{V}_{\mathrm{A}}=0.3 \mathrm{~V}$ or 4.0 V	4.5		± 20	± 100	nA
${ }^{\text {Power_OFF }}$	Power Off Leakage Current (S Pin)	$\mathrm{V}_{\text {IN }}=0$ or 4.5 V	0			± 100	nA
ICC	Quiescent Supply Current (V_{CC} Pin)	$\begin{gathered} \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ \mathrm{~V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ \mathrm{I}_{\text {Load }}=0 \mathrm{~A} \end{gathered}$	1.65-4.5		0.1	1.0	$\mu \mathrm{A}$
$\Delta_{\text {l }}$	Additional Quiescent Supply Current (VCC Pin)	$\begin{gathered} V_{I N}=V_{C C} \text { or GND, } \\ V_{I S}=V_{C C} \text { or } G N D, \\ I_{\text {Load }}=0 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 3.3 \\ & 4.2 \end{aligned}$			$\begin{aligned} & \hline 2.0 \\ & 3.0 \end{aligned}$	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. ON RESISTANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
R_{ON}	ON-Resistance	$\begin{gathered} \mathrm{ION}=8 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & 9.3 \\ & 8.7 \\ & 7.5 \end{aligned}$		Ω
$\mathrm{R}_{\text {FLAT }}$	ON-Resistance Flatness	$\begin{gathered} \mathrm{ION}_{\mathrm{ON}}=8 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & \hline 3.6 \\ & 3.3 \\ & 2.9 \end{aligned}$		Ω
$\Delta \mathrm{R}_{\text {ON }}$	Delta ON- Resistance	$\begin{gathered} \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & 2.7 \\ & 3.3 \\ & 4.2 \end{aligned}$		$\begin{aligned} & \hline 0.8 \\ & 0.7 \\ & 0.5 \\ & \hline \end{aligned}$		Ω

AC ELECTRICAL CHARACTERISTICS

Table 5. TIMING/FREQUENCY (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Parameter	Test Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
$t_{\text {PD }}$	Propagation Delay, A to Bn or Bn to A		1.65-4.5			0.25	ns
ton	Turn-ON Time	(See Figures 4 and 5)	1.65-4.5			35	ns
$\mathrm{t}_{\text {OFF }}$	Turn-OFF Time	(See Figures 4 and 5)	1.65-4.5			25	ns
$\mathrm{t}_{\text {BBM }}$	Break-Before-Make Time	(See Figure 3)	1.65-4.5	2.0			ns
BW	-3 dB Bandwidth	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	1.65-4.5		900		MHz

Table 6. ISOLATION (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$)

Symbol	Parameter	Test Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
$\mathrm{O}_{\text {IRR }}$	OFF-Isolation	$\mathrm{f}=240 \mathrm{MHz}$ (See Figure 6)	1.65-4.5		-21		dB
$\mathrm{X}_{\text {TALK }}$	Non-Adjacent Channel Crosstalk	$\mathrm{f}=240 \mathrm{MHz}$	1.65-4.5		-21		dB

Table 7. CAPACITANCE (Typical: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$)

Symbol	Parameter	Test Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	
C_{IN}	Control Input Capacitance	S pin			2.0	pF
$\mathrm{Con}^{\text {a }}$	ON Capacitance	Switch ON A to B0 A to B1			7.5	pF
CofF	OFF Capacitance	Switch OFF BO OFF B1 OFF			2.5	pF

Figure 3. t_{BB} (Time Break-Before-Make)

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

DEVICE ORDERING INFORMATION

Device	Package	Shipping †
NLAS3257AMU3TCG	UDFN6 $-1.0 \times 1.0,0.35 \mathrm{P}$	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

UDFN6 1x1, 0.35P
CASE 517EC
ISSUE O
DATE 09 NOV 2018

DETAIL A ALTERNATE TERMINAL CINSTRUCTIDNS

GENERIC
MARKING DIAGRAM*

DETAIL B
ALTERATE
CINSTRUCTIDN
NDTES:

1. DIMENSIDNING AND TZLERANCING PER. ASME Y14.5M, 1994.
2. CUNTRDLLING DIMENSIDN: MILLIMETERS
3. DIMENSIIN b APPLIES TD THE PLATED TERMINALS AND IS MEASURED BETWEEN 0.15 AND 0.20 FRDM THE TERMINAL TIPS.
4. PACKAGE DIMENSIDNS EXCUSIVE DF BURRS AND MLLD FLASH.

alternate a-2

XX = Specific Device Code
M = Date Code
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " "", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON00214H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	UDFN6 1x1, 0.35P		PAGE 1 OF 1

ON Semiconductor and (UN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

