

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Quad SPST JFET Analog Switches

SW-201/SW-202

FEATURES

SW-201

- . Normally "ON" for Logic 0 input
- Improved Performance and Pin Compatible With DG-201, LF11201/13201, HI201, and IH201

SW-202

- . Normally "OFF" For Logic 0 Input
- Improved Performance and Pin Compatible With LF11202/12202/13202 and IH202

Both \$W-201 and \$W-202

- Highly Resistant to Static Discharge Destruction
- Guaranteed Break-Before-Make Switching (topp < ton)
- Low "ON" Resistance 800 Max
- Guaranteed Ron Matching 15% Max
- Low Ron Variation from Analog Input Voltage 5%
- High Analog Current Operation 10mA Min
- Low Leakage Currents at High Temperatures:

T_A = 125° C 60nA Max

T_A = 85°C 30nA Max

Guaranteed Switching Speeds:

t_{ON} = 500ns Max t_{OFF} = 400ns Max

- . Digital inputs are TTL and CMOS Compatible
- Dual or Single Supply Operation
- Available in Die Form

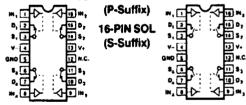
ORDERING INFORMATION ¹

DIP	SWITCH CON	OPERATING TEMPERATURE	
PACKAGE	NC	NO	RANGE
16-PIN EPOXY	SW201GP	SW202GP	XIND
16-PIN SOL	SW201GS	SW202GS	XIND

[†] Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.

GENERAL DESCRIPTION

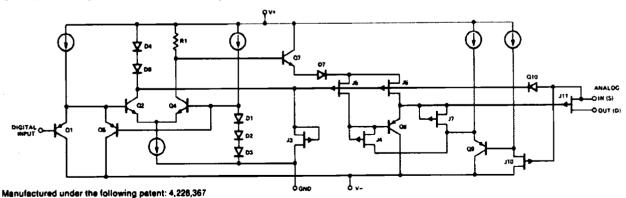
The SW-201 and SW-202 each consist of four independent, single-pole, single-throw (SPST) analog switches, which may be independently digitally controlled. Each SW-201 switch is normally closed (NC), whereas each SW-202 is normally open (NO) when the corresponding digital control input is a zero. The SW-201 and SW-202 are otherwise identical.


The judicious combination of bipolar and FET devices in a single monolithic IC results in a product with performance characteristics and ruggedness that are superior to those of a similar circuit fabricated using CMOS technology.

Increased reliability is complemented by excellent electrical specifications. Potential error sources are reduced by minimizing "ON" resistance and controlling leakage currents at high temperatures. The switching FET exhibits minimal R_{ON} variation over a 20V analog signal range and with power supply voltage changes. Operation from a single positive power supply voltage is possible. With V+=36V, V-=0V, the analog signal range will extend from ground to +32V.

The PNP logic inputs are TTL and CMOS compatible. Logic input currents are at micro-ampere levels which improves circuit fan in.

PIN CONNECTIONS


16-PIN PLASTIC DIP

SW-201 CONTROL LOGIC					
LOGIC	SWITCH				
0	ON				
1	OFF				

SW-202 CONTROL LOGIC				
LOGIC SWITCH				
0	OFF			
1	ON			

SIMPLIFIED SCHEMATIC DIAGRAM (ONE SWITCH)

DEV A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. 8ox 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700 Fax: 617/326-8703 Twx: 710/394-6577
Telex: 924491 Cable: ANALOG NORWOODMASS

ABSOLUTE MAXIMUM RATINGS (Note 1)

Operating Temperature Range	
SW-201GP, GS, SW202GP, GS	40°C to +85°C
Junction Temperature (T _i)	65°C to +150°C
Junction Temperature (T _j)	65°C to +150°C
P-Suffix	65°C to +125°C
Lead Temperature (Soldering, 60 sec)	
Maximum Junction Temperature	
V+ Supply to V- Supply	
V+ Supply to Ground	
Logic Input Voltage (-4	IV or V-) to V+ Supply
Analog Input Voltage Range	
Continuous V- Supr	oly to V+ Supply + 20V

1% Duty Cycle and Driving All 4 Inputs with 500µsec Pulse V- Supply -15V to V+ Supply + 20V Maximum Current Through Any Pin						
PACKAGE TYPE	e _{ja} (Note 2)	e _{ic}	UNITS			
16-Pin Plastic DIP (P)	82	39	°C/W			
16-Pin SOL (S)	98	30	•€W			

NOTES:

- Absolute ratings apply to both DICE and packaged parts, unless otherwise noted.
- e_{jA} is specified for worst case mounting conditions, i.e., e_{jA} is specified for device in socket for P-DIP package: e_{jA} is specified for device soldered to printed circuit board for SOL package.

ELECTRICAL CHARACTERISTICS at $V\pm=\pm15V$ and $T_A=25^{\circ}C$, unless otherwise noted.

PARAMETER				SW-201G SW-202G		
	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
'ON" Resistance	RON	V _A = 0V, I _S = 1mA V _A = ±10V, I _S = 1mA		100 100	150 150	1
R _{ON} Match Between Switches	R _{ON} Match	V _A = 0V. ! _O = 100μA; ·Note 1 ·	B0-11		20	ه.
Anatog Voltage Range	V _A	I _S = 1.0mA Note 6	+ 10 - 10	+ 11 15		
Analog Current Range	l _A	V _S = + 10V	5	10		m.
JR _{ON} vs Applied Voltage	7 _R ON	V _S < 10V, I _S = 1mA		10	20	9
Source Current in "OFF" Condition	I _{S (OFF)}	V _S = 10V, V _D = -10V, (Note 5)	<u> </u>		10	n/
Drain Current in "OFF" Condition	D OFF	V _S = 10V. V _D = -10V.			10	n.
Leakage Current in	SON +	V _S = v _D = ± 10V, :Note 5		<u>-</u>	10	n,
Logical "1" Input Current	INH	V _{IN} = 2V to 15V, :Note 4:			10	μ·
Logical "0" Input Current	InL	V _{IN} = 0.8		15	10.0	μ
Turn-On-Time	lon	See Switching Time Test Circuit, (Note 7:	-	340	700	n
Turn-Off-Time	toff	See Switching Time Test Circuit, (Note 7:		200	500	
Break-Betore-Make Time	¹ ON ⁻¹ OFF	Note 3:	50	140		n
Source Capacitance	C _{S-OFF}	V _A = 0V, : Note 5:	_	7		ρ
Drain Capacitance	C _{D.Off}	V _A = 0V, :Note 5	_	5.5	**************************************	P
Channel "ON" Capacitance	C _{D·ON} .+ C _{S·ON} ;	V _S V _D 0V. (Note 5)		15		p
"OFF" Isolation	ISO OFF	V _S = 5V _{RMS} , R _L = 680N, C _L = 7pF, 1 = 500kHz, (Note 5)		58	50-000, 0.000, 0	đ
Crosstalk	C ₇	ν _S = 5ν _{RMS} , R _L = 680Ω, C _L = 7pF, f = 500kHz, : Note 5	_	70		d
Positive Supply Current	1+	All Channels "ON", (Note 5)		4	12	m
Negative Supply Current	Į-	All Channels "ON", •Note 5:	_		6.5	m
Positive Supply Current	1+	All Channels "OFF".	_	6	12	m
Negative Supply Current	1~	All Channels "OFF". Note 5	_	4	8	m
Ground Current	16	All Channels "ON"	-	3	6	m

ELECTRICAL CHARACTERISTICS at $V\pm=\pm15V$; $-40^{\circ}C \le T_{A} \le +85^{\circ}C$, unless otherwise noted.

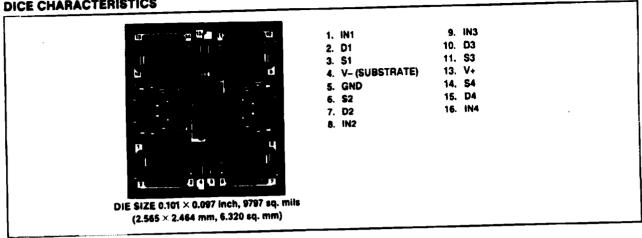
PARAMETER			SW-201G SW-202G			
	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Temperature Range	T _A	Operating	0		70	°C
'ON" Resistance	R _{ON}	$V_A = 0V$, $I_D = 1mA$ $V_A = \pm 10V$, $I_D = 1mA$	- -		175 175	t!
R _{ON} Match Between Switches	R _{ON} Match	V _A = 0V. I _O = 100µA; (Note 1)	_	10		*
Analog Voltage Range	V _A	I _S = 1.0mA Note 6 I _S = 1.0mA	+ 10	+ 11 15	 	v
Analog Current Range	l _A	V _S - ± 10.0V		11		mA.
△R _{ON} With Applied Voltage	7H ^{ON}	V _S ≤ +10V I _S = 1 mA		15		*
Source Current in "OFF" Condition	Is OFF	$V_S = 10V$, $V_D = -10V$, : Note 5: $T_A = Max$. Operating Temp.	<u>-</u>		60	nA
Drain Gurrent in "OFF" Condition	ID OFF.	$V_S = 10V$, $V_D = -10V$. (Note 5: $T_A = Max$. Operating Temp.		-	60	nA
Leskage Current in "ON" Condition	I _{S+ON2+} I _{D+ON1}	$V_S = V_D = \pm 10V_c$; Note 5: $T_A = Max$. Operating Temp.	-	_	60	nA
Logical "1" Input Voltage	ViNH	:Note 6	2			<u>.</u>
Logic "0" Input Voltage	V _{INL}	:Note 6:			0.8	\
Logical "1" Input Current	I _{INH}	V _{IN} = 2V to 15V, :Note 4:	===		15	μ
Logical "0" Input Current	INL	V _{IN} = 0.8		5	15	<u></u>
Turn-On-Time	^t on	See Switching Test Circuit, (Note 2)		_	1000	Ų
Turn-Ott-Time	lOff	See Switching Test Circuit, iNote 2:	_	_	500	ns
Break-Before-Make Time	ton-toff	:Note 3:		50		ng
Positive Supply Current	11	All Channels "ON", (Note 5)			15.8	m/
Negative Supply Current	l-	All Channels "ON", (Note 5:			14.5	m/
Positive Supply Current	1+	All Channels "OFF".	_	_	18	m/
Negative Supply Current	. 1-	Ail Channels "OFF".		_	14.5	m/
Ground Current	¹c	All Channels "ON" or "OFF"		_	10.0	m/

NOTES:

1. V_A = 0V, I_D = 100 μ A. Specified as a percentage of R_{AVERAGE} where: $\frac{R_{ON1} + R_{ON2} + R_{ON3} + R_{ON4}}{4}$

2. Guaranteed by design.

3. Switch is guaranteed by design to provide break-before-make operation.


4. Current tested at V_{IN} = 2V. This is worst case condition.

 Switch being tested ON or OFF as indicated, V_{INH} = 2V or V_{INL} = 0.8V, per logic truth table.

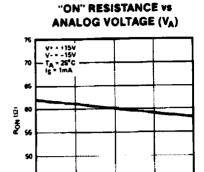
 Guaranteed by R_{ON} and leakage tests. For normal operation analog signal voltages should be restricted to less than (V+) ~4V.

7. Sample tested.

DICE CHARACTERISTICS

WAFER TEST LIMITS at $V_+ = 15V$, $V_- = -15V$, $T_A = 25$ °C, unless otherwise noted.

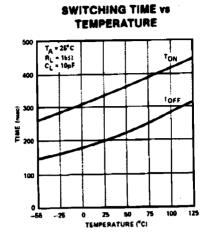
WAFER TEST CIMITO			SW-201N SW-202N LIMIT	SW-201G SW-202G LIMIT	UNITS
Marameter	SYMBOL	CONDITIONS		100	Ω ΜΑΧ
'ON" Resistance	RON	-10V ≤ V _A ≤ 10V, I _S ≤ 1mA	80	20	% MAX
R _{ON} Mismatch	R _{ON} Match	V _A = 0V, I _S ≤ 100 μA	15		
	ARON	V _S ≤ 10V, I _S = 1mA	15		% MAX
ARON VS VA		(Note 1)	9	10.5	mA MAX
Positive Supply	1+		6	7	mA MAX
Negative Supply Current	<u> </u>	(Note 1)		4	ma Max
Ground Current	l _G			410	V MIN
Analog Voltage Range	V _A	Is = 1mA (Note 3)	<u>±10</u>	± 10	V MIN
Logic "1" Input Voltage	V _{INH}	(Note 3)	2	2	
		(Note 3)	0.8	0.8	V MAX
Logic "0" Input Voltage	VINL		5	5	μΑ MAX
Logic "0" Input Current	IINL	0V ≤ V _{IN} ≤ 0.8V		5	μΑ ΜΑΧ
Logic "1" Input Current	I INH	2V ≤ V _{IN} ≤ 15V, (Note 2)	5		mA MIN
Analog Current Range	I _A	V _S = ± 10V	10	7	DIA MIN

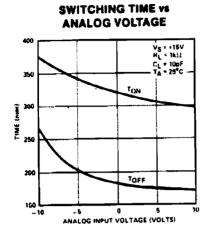

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

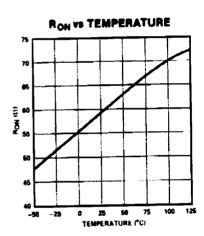
TYPICAL ELECTRICAL CHARACTERISTICS V+ = 15V, V- = -15V and T_A = 25°C, unless otherwise noted.

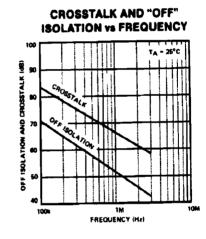
TYPICAL ELECTRICAL CHARACTERISTICS					
		SW-201N SW-202N TYPICAL	SW-201G SW-202G TYPICAL	UNITS	
		60	60	<u> </u>	
HON	-104 3 47 3 104 18 2 1111	340	340	ns	
ton			200	ns	
1 _{OFF}		200	500		
D (OFF)	V _S = 10V, V _D = -10V	0.3	0.3	nA	
		58	58	dB	
SO (OFF)			70	dB	
CT	1 = 500kHz, R _L = 680 Ω				
	SYMBOL RON TON TOFF DIOFF:	SYMBOL CONDITIONS R_{ON} -10V ≤ V _A ≤ 10V, I _S ≤ 1mA t_{ON} t_{OFF} $t_{D (OFF)}$ V _S = 10V, V _D = -10V $t_{SO (OFF)}$ f = 500kHz, R _L = 680Ω	SW-201N SW-202N SW-202N TYPICAL	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

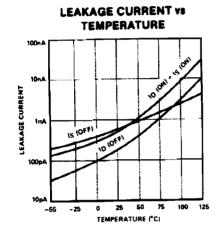
- 1. Power supply and ground current specified for switch "ON" or "OFF".
- 2. Current tested at $V_{\rm IN}$ = 2V. This is worst case condition.
- 3. Guaranteed by R_{ON} and leakage tests.

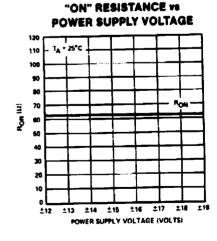

TYPICAL PERFORMANCE CHARACTERISTICS

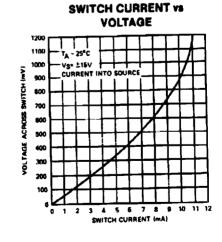


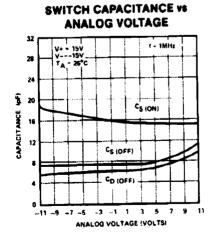

ANALOG INPLIT VOLTAGE-VA (VOLTS)

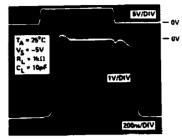

40

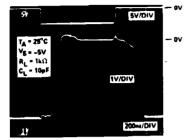

-10



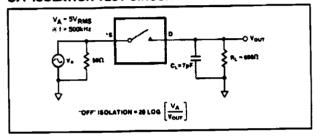




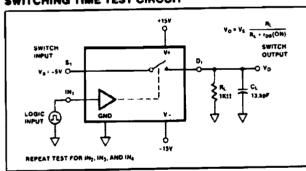



TYPICAL PERFORMANCE CHARACTERISTICS

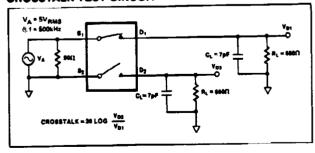
 $SW \cdot 201 \\ t_{ON}/t_{OFF} SWITCHING RESPONSE$

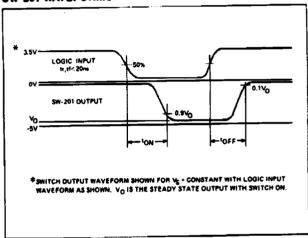

TOP TRACE: LOGIC INPUT (5V/DIV)
BOTTOM TRACE: SWITCH OUTPUT (1V/DIV)

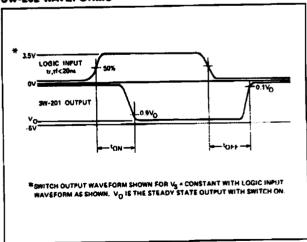
 ${\rm SW-202} \\ {\rm t_{OM}/t_{OFF}~SWITCHING~RESPONSE} \\$



TOP TRACE: LOGIC INPUT (EV/DIV)
BOTTOM TRACE: SWITCH OUTPUT (IV/DIV)

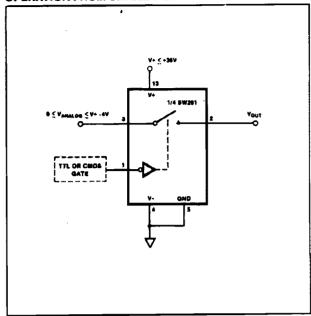

OFF ISOLATION TEST CIRCUIT


SWITCHING TIME TEST CIRCUIT


CROSSTALK TEST CIRCUIT

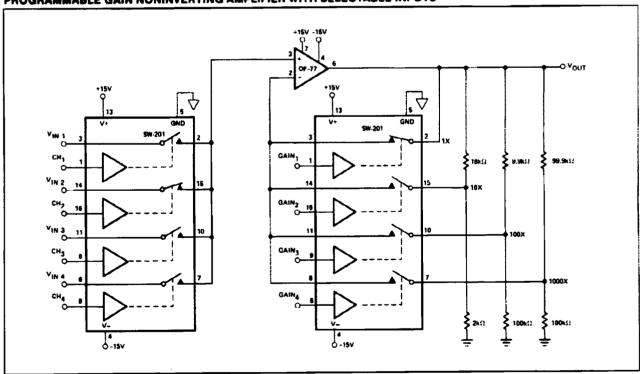
SW-201 WAVEFORMS

SW-202 WAVEFORMS



APPLICATIONS INFORMATION

This analog switch employs ion-implanted JFETs in a switch configuration designed to assure break-before-make action. The turn-off time is much faster than the turn-on time to guarantee this feature over the full operating temperature and input voltage range. Fabricated with Bipolar-JFET processing rather than CMOS, special handling is not necessary to prevent damage to these switches. Because the digital inputs only require a 2V logic "1" input level, power-consuming pullup resistors are not required for TTL compatibility to insure break-before-make switching as is most often the case with CMOS switches. The digital inputs utilize PNP input transistors where input current is maximum at the logic "0" level and drops to that of a reverse-biased diode as the input voltage is raised above ~ 1.4V.


The "ON" resistance, R_{ON} , of the analog switches is constant over the wide input voltage range of -15V to +11V with $V_{SUPPLY}=\pm15V$. For normal operation, however, positive input voltages should be restricted to 11V (or 4V less than the positive supply). This assures that the V_{GS} of an OFF switch remains greater than its V_P , and prevents that channel from being falsely turned ON. Individual switches are "ON" without power applied.

OPERATION FROM SINGLE POSITIVE POWER SUPPLY

TYPICAL APPLICATIONS

PROGRAMMABLE GAIN NONINVERTING AMPLIFIER WITH SELECTABLE INPUTS

