No High-Voltage Bias, 32-Channel, High-Voltage Analog Switch with L-Switch Architecture

Features

- 32-Channel High-Voltage Analog Switch
- No High-Voltage Bias Required
- $\pm 100 \mathrm{~V}$ Analog Signal Voltage Range
- L-Switch ${ }^{\text {TM }}$ Architecture
- Ultra-Low Switch on Resistance - 4.5Ω, typ.
- Low Parasitic Capacitance
- 32-Channel Single-Pole-Single-Throw (SPST) Individual Switching or Bank Switching
- Standby Mode for Low Power Dissipation
- 3.3V CMOS Input Logic Level
- 66 MHz Data Shift Clock Frequency
- Silicon-on-Insulator (SOI) HVCMOS Technology for High Performance
- DC to 100 MHz Analog Small-Signal Frequency
- 100 kHz to 50 MHz Large-Signal Frequency
- Cascadable Serial Data Register with Latches

Application

- Medical Ultrasound Imaging
- NDT Metal Flaw Detection
- Piezoelectric Transducer Drivers
- Inkjet Printer Head
- Optical MEMS Module

General Description

HV2070 is an L-Switch ${ }^{\text {TM }}$ architecture, low harmonic distortion, low charge injection, 32-channel, highvoltage analog switch without high-voltage bias. It is intended for use in applications requiring high-voltage switching controlled by low-voltage control signals, such as medical ultrasound imaging, driving piezoelectric transducers and printers.
Using the L-Switch ${ }^{\mathrm{TM}}$ architecture, the switch onresistance and parasitic capacitance of the highvoltage switches are greatly reduced. The typical on resistance is 4.5Ω and switch-to-ground on/off capacitances are 20 pF and 11 pF , respectively. The low parasitic capacitance and low on-resistance make HV2070 ideal for applications such as shear wave elastography and High Intensity Focused Ultrasound (HIFU), which require high power dissipation.
The HV2070 has two modes of operation determined by the MODE pin logic input. MODE input high enables individual switching mode of 32-channel SPST switches and MODE input low enables bank switching mode of 16-Pole-Double-Throw (16PDT) switches to support bank switching for probe selection.
The device requires only $\pm 6 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$ low-voltage supplies and no high-voltage supplies such as $\pm 100 \mathrm{~V}$. However, all of the analog switches can transmit $\pm 100 \mathrm{~V}$ high-voltage pulses.

Package Type

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings \dagger
Logic Supply Voltage (V_{LL})... 0.5 V to +6.6 V
Positive Supply Voltage (VD).. 0.5 V to +6.6 V
Negative Supply Voltage (V_{SS}) .. +0.5 V to -6.6 V

DGND to GND ... 0.3 V to +0.3V
Analog Signal Range ($\mathrm{V}_{\text {SIG }}$)...-110V to +110 V
Peak Analog Signal Current/Channel (IPK)..3.7A
\dagger Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Logic Supply Voltage	V_{LL}	3	-	3.6	V	
Positive Supply Voltage	V_{DD}	4.5	-	6.3	V	
Negative Supply Voltage	V_{SS}	-6.3	-	-4.5	V	
High-Level Input Voltage	V_{IH}	$0.9 \mathrm{~V}_{\mathrm{LL}}$	-	V_{LL}	V	
Low-Level Input Voltage	V_{IL}	0	-	$0.1 \mathrm{~V}_{\mathrm{LL}}$	V	
Analog Signal Voltage Peak-to- Peak	$\mathrm{V}_{\mathrm{SIG}}$	-100	-	100	V	

Note 1: Power up sequence is $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}$ and then V_{LL}. Power down sequence is reverse of power-up.
2: $\quad V_{S I G}$ must be $\mathrm{V}_{S S} \leq \mathrm{V}_{\text {SIG }} \leq$ VDD or floating during power-up/down transition.
3: Rise and fall times of power supplies, $\mathrm{V}_{\mathrm{LL}}, \mathrm{V}_{\mathrm{DD}}$ and V_{SS} should be greater than 1 ms .

DC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=$ operating temperature range of T_{A}	$\begin{aligned} & 1, V_{S S}=- \\ & 0^{\circ} \mathrm{C} \text { to } 70 \end{aligned}$	$\overline{\mathrm{V}, \mathrm{~V}_{\mathrm{LL}}}$	$3.3 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=2$	C, Bol	dface specifications apply over the full
Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
		-	4.5	8	Ω	$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$
Small Signal Switch ONResistance	$\mathrm{R}_{\text {ONS }}$	-	4.7	-	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{SIG}}=5 \mathrm{~mA}(\text { Note 1) } \end{aligned}$
		-	4.5	8	Ω	$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$
Small Signal Switch ONResistance Matching	$\Delta \mathrm{R}_{\text {ONS }}$	-	5	20	\%	$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$
Large Signal Switch ONResistance	$\mathrm{R}_{\text {ONL }}$	-	4	-	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{SIG}}=90 \mathrm{~V} \\ & 1 \mu \mathrm{~s} \text { pulse (Note 1) } \end{aligned}$
Switch Off SWT Shunt Resistance	R_{ST}	-	7	12	Ω	$\mathrm{I}_{\mathrm{RST}}=100 \mathrm{~mA}$
		-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SIG }}=+100 \mathrm{~V}$ $400 \mu \mathrm{~s}$ pulse. See Figure 3-1
Switch Off Bias per SWS	S	-	-	4	mA	$\begin{aligned} & \mathrm{V}_{\text {SIG }}=-100 \mathrm{~V} \\ & 12 \mathrm{~s} \text { pulse. See Figure 3-1 } \end{aligned}$

Note 1: Specification is obtained by characterization and is not 100% tested.
2: Design guidance only.

HV2070

Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Boldface specifications apply over the full operating temperature range of $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
DC Offset Switch OFF	$\mathrm{V}_{\text {OS }}$	-	1	10	mV	$\begin{aligned} & R_{\text {LOAD }}=25 \mathrm{k} \Omega \\ & \text { See Figure } 3-2 \end{aligned}$
DC Offset Switch ON		-	1	10		
Quiescent $\mathrm{V}_{\text {DD }}$ Supply Current	$\mathrm{I}_{\text {DDQ }}$	-	1	5	mA	All switches off.
Quiescent $\mathrm{V}_{\text {SS }}$ Supply Current	$\mathrm{I}_{\text {SSQ }}$	-	0.5	4	mA	
Quiescent $\mathrm{V}_{\text {DD }}$ Supply Current	$\mathrm{I}_{\mathrm{DDQ}}$	-	1	5	mA	All switches on $V_{S W}=1 \mathrm{~V}$.
Quiescent $\mathrm{V}_{\text {SS }}$ Supply Current	ISSQ	-	1.2	5	mA	
Quiescent $\mathrm{V}_{\text {LL }}$ Supply Current	ILLQ	-	0.3	10	$\mu \mathrm{A}$	All logic inputs are static.
Standby $\mathrm{V}_{\text {DD }}$ Supply Current	$\mathrm{I}_{\text {DDS }}$	-	50	100	$\mu \mathrm{A}$	$\overline{\text { STBY }}=0 \mathrm{~V}$
Standby $\mathrm{V}_{\text {SS }}$ Supply Current	ISSS	-	13	100	$\mu \mathrm{A}$	$\overline{\text { STBY }}=0 \mathrm{~V}$
Standby V LL Supply Current	ILLS	-	-	2	uA	$\overline{\text { STBY }}=0 \mathrm{~V}$
Switch Output Peak Current	ISW	2.5	3.7	-	A	$\mathrm{V}_{\text {SIG }}$ duty cycle $<0.1 \%$ (Note 1)
Output Switching Frequency	$\mathrm{f}_{\text {SW }}$	-	-	50	kHz	Duty cycle = 50\% (Note 1)
Average V_{DD} Supply Current	IDD	-	7.5	20	mA	All output switches are turning ON and OFF at 50 kHz with no load$\mathrm{V}_{\mathrm{SIG}}=0 \mathrm{~V}$
Average $\mathrm{V}_{\text {SS }}$ Supply Current	Iss	-	6.1	16	mA	
Average $\mathrm{V}_{\text {LL }}$ Supply Current	$\mathrm{l}_{\text {LL }}$	-	1.4	6	mA	$\mathrm{f}_{\mathrm{CLK}}=5.0 \mathrm{MHz}$
Data Out Source Current	$\mathrm{I}_{\text {SOR }}$	10	-	-	mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {LL }}-0.7 \mathrm{~V}$
Data Out Sink Current	$\mathrm{I}_{\text {SINK }}$	10	-	-	mA	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$
Logic Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	8	-	pF	Note 2

Note 1: Specification is obtained by characterization and is not 100% tested.
2: Design guidance only.

AC ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$, Boldface specifications apply over the full operating temperature range of $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Setup Time Before LE Rises	$\mathrm{t}_{\text {SD }}$	25	-	-	ns	Note 1
Time Width of $\overline{\text { LE }}$	$\mathrm{t}_{\text {WLE }}$	12	-	-	ns	Note 1
Clock Delay Time to Data Out	t_{DO}	-	-	13.5	ns	
Time Width of CLR	$t_{\text {WCLR }}$	55	-	-	ns	Note 1
Setup Time Data to Clock	$t_{\text {SU }}$	1.5	-	-	ns	Note 1
Hold Time Data from Clock	t_{H}	1.5	-	-	ns	Note 1
Clock Frequency	$\mathrm{f}_{\text {CLK }}$	-	-	66	MHz	$\begin{aligned} & 50 \% \text { duty cycle } \\ & \mathrm{f}_{\text {DIN }}=(1 / 2){ }^{*} \mathrm{f}_{\mathrm{CLK}} \\ & \mathrm{C}_{\text {DOUT }}=20 \mathrm{pF},(\text { Note } 1) \end{aligned}$
Clock Rise and Fall Times	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	-	-	50	ns	
Turn ON Time	t_{ON}	-	-	5	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\text {SIG }}=5 \mathrm{~V} \\ & \mathrm{R}_{\text {LOAD }}=550 \Omega \text {. See Figure 3-3 } \end{aligned}$
Turn OFF Time	$\mathrm{t}_{\text {OFF }}$	-	-	5	$\mu \mathrm{s}$	
Input Large Signal Pulse Width	${ }_{\text {t }}$ W	-	-	2.5	$\mu \mathrm{s}$	$V_{\text {PULSE }}=0 \mathrm{~V}$ to $\pm 100 \mathrm{~V}$. Measured at 90% amplitude. See Figure 3-4 (Note 1)

Note 1: Specification is obtained by characterization and is not 100% tested.
2: Design guidance only.

Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$, Boldface specifications apply over the full operating temperature range of $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Parameters	Sym.	Min.	Typ.	Max.	Units	Conditions
Wake-Up Time from Standby to Digital Logic Normal Operation	$t_{\text {wu }}$	-	-	10	$\mu \mathrm{s}$	Bank switching mode (MODE = L)
		-	-	10	$\mu \mathrm{s}$	Individual switching mode (MODE = H) (Note 1)
Maximum $\mathrm{V}_{\text {SIG }}$ Slew Rate	$\mathrm{dV} / \mathrm{dt}$	-	-	20	V/ns	Note 1
Analog Small Signal Frequency	$\mathrm{f}_{\mathrm{BWS}}$	-	100	-	MHz	Note 1
OFF Isolation SWS to SWT	K_{O}	-	-56	-51	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 1.0 \mathrm{k} \Omega / / 15 \mathrm{pF} \text { load. }$ See Figure 3-5 (Note 1)
		-	-66	-61		$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load. See Figure 3-5 (Note 1)
OFF Isolation SWT to SWS		-	-56	-51	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 1.0 \mathrm{k} \Omega / / 15 \mathrm{pF} \text { load. }$ See Figure 3-6 (Note 1)
		-	-58	-53		$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load. See Figure 3-6 (Note 1)
Switch Crosstalk	K_{CR}	-	-66	-61	dB	$\mathrm{f}=5.0 \mathrm{MHz}, 50 \Omega$ load. See Figure 3-7 (Note 1)
Off-Capacitance SW to GND	$\mathrm{C}_{\text {SG(OFF) }}$	-	11	-	pF	$\mathrm{V}_{\text {SIG }}=50 \mathrm{mV} @ 1 \mathrm{MHz}$, no load
On-Capacitance SW to GND	$\mathrm{C}_{\text {SG(ON) }}$	-	20	-		(Note 1)
Output Voltage Spike at SWS	$+\mathrm{V}_{\text {SPK }}$	-	-	150	mV	$R_{\text {LOAD }}=50 \Omega$. See Figure 3-8 (Note 1)
	$-\mathrm{V}_{\text {SPK }}$	-150	-	-	mV	
Charge Injection	QC	-	310	-	pC	See Figure 3-9 (Note 1)
Second Harmonic Distortion	HD2	-	-70	-55	dBc	$\begin{aligned} & \mathrm{V}_{\mathrm{SIG}}=1.5 \mathrm{~V}_{\mathrm{PP}} @ 5 \mathrm{MHz}, \\ & 50 \Omega \text { load (Note 1) } \end{aligned}$
		-	-70	-56	dBc	$\begin{aligned} & \mathrm{V}_{\mathrm{SIG}}=1.5 \mathrm{~V}_{\text {PP } @ 5 \mathrm{MHz}} \\ & 1 \mathrm{k} \Omega / / 15 \mathrm{pF} \text { load (Note 1) } \end{aligned}$

Note 1: Specification is obtained by characterization and is not 100% tested.
2: Design guidance only.

TEMPERATURE SPECIFICATIONS

Parameters	Sym	Min	Typ	Max	Units	Conditions
Temperature Range						
Operating Temperature Range	T_{A}	0	-	+70	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	T_{A}	-65	-	+150	${ }^{\circ} \mathrm{C}$	
Maximum Junction Temperature	T_{J}	-	-	+125	${ }^{\circ} \mathrm{C}$	
Package Thermal Resistance						
Thermal Resistance, TFBGA	Θ_{JA}	-	+20	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

TABLE 1-1: TRUTH TABLE

$\overline{\text { STBY }}$	MODE	D0	D1	...	D15	D16	...	D31	Din/AB	LEIEN	CLR	swo	sw1	...	SW15	sw16	...	SW31
H	H	L	-	\ldots	-	-	...	-	X	L	L	OFF	-	...	-	-	...	-
H	H	H	-		-	-		-	x	L	L	ON	-		-	-		-
H	H	-	L		-	-		-	x	L	L	-	OFF		-	-		-
H	H	-	H		-	-		-	x	L	L	-	ON		-	-		-
H	H	-	-		-	-		-	X	L	L	-	-		-	-		-
H	H	-	-		-	-		-	x	L	L	-	-		-	-		-
H	H	-	-		L	-		-	x	L	L	-	-		OFF	-		-
H	H	-	-		H	-		-	X	L	L	-	-		ON	-		-
H	H	-	-		-	L		-	x	L	L	-	-		-	OFF		-
H	H	-	-		-	H		-	x	L	L	-	-		-	ON		-
H	H	-	-		-	-		-	X	L	L	-	-		-	-		-
H	H	-	-		-	-		-	x	L	L	-	-		-	-		-
H	H	-	-		-	-		L	X	L	L	-	-		-	-		OFF
H	H	-	-		-	-		H	X	L	L	-	-		-	-		ON
H	H	X	X	X	X	X	X	X	X	H	L			LD	REVIOU	STATE		
H	H	x	X	X	X	x	x	X	X	X	H			ALL	WITCHE	S OFF		
H	L	x	X	X	X	X	X	X	L	H	X		N SWI	HES	FF \&	DD SWI	CHE	ON
H	L	x	x	x	x	x	x	x	H	H	x		N SWI	HES	ON \& OD	D SWIT	HES	OF
H	L	X	X	X	X	X	X	X	X	L	X			ALL	WITCHE	S OFF		
L	x	x	X	X	X	x	X	X	X	X	X		ALL S	TCH	OFF,	TANBY	TAT	

Note 1: The 32 switches operate independently (when MODE = H).
2: Serial data is clocked in on the L to H transition of the CLK (when MODE = H).
3: All 32 switches go to a state retaining their latched condition a the rising edge of $\overline{\mathrm{LE}} / \mathrm{EN}$. When $\overline{\mathrm{LE}} / \mathrm{EN}$ is low, the shift registers data flow through the latch (when MODE = H).
4: DOUT is high when data in register 31 is high (when MODE $=\mathrm{H}$).
5: Shift register clocking has no effect on the switch states if $\overline{\mathrm{LE}} / \mathrm{EN}$ is high (when MODE $=\mathrm{H}$).
6: The CLR clear input overrides all the inputs (when MODE $=\mathrm{H}$).
Legend: $H=$ High, $L=$ Low, $X=$ Irrelevant

1.1 Typical Timing Diagram

Figure $1-1$ shows timing of AC characteristic parameters graphically.

HV2070

NOTES:

2.0 PIN DESCRIPTION

This section details the pin designation for the 121-Ball TFBGA package (Figure 2-1). The descriptions of the pins are listed in Table 2-1.

FIGURE 2-1: 121-Ball TFBGA Package - Top View.
TABLE 2-1: PIN FUNCTION TABLE

Pin Number	Symbol	Description
A1	SW11S	Analog switch 11 terminal S
A2	SW12S	Analog switch 12 terminal S
A3	SW13S	Analog switch 13 terminal S
A4	SW14S	Analog switch 14 terminal S
A5	SW15S	Analog switch 15 terminal S
A6	SW16S	Analog switch 16 terminal S
A7	SW17S	Analog switch 17 terminal S
A8	SW18S	Analog switch 18 terminal S
A9	SW19S	Analog switch 19 terminal S
A10	SW20S	Analog switch 20 terminal S
A11	SW21S	Analog switch 21 terminal S

TABLE 2-1: (CONTINUED)PIN FUNCTION TABLE

Pin Number	Symbol	Description
B1	SW11T	Analog switch 11 terminal T
B2	SW12T	Analog switch 12 terminal T
B3	SW13T	Analog switch 13 terminal T
B4	SW14T	Analog switch 14 terminal T
B5	SW15T	Analog switch 15 terminal T
B6	SW16T	Analog switch 16 terminal T
B7	SW17T	Analog switch 17 terminal T
B8	SW18T	Analog switch 18 terminal T
B9	SW19T	Analog switch 19 terminal T
B10	SW20T	Analog switch 20 terminal T
B11	SW21T	Analog switch 21 terminal T
C1	$V_{\text {DD }}$	Positive supply voltage
C2	$\mathrm{V}_{\text {SS }}$	Negative supply voltage
C3~C9	NC	No connection
C10	$\mathrm{V}_{S S}$	Negative supply voltage
C11	V_{DD}	Positive supply voltage
D1	SW10S	Analog switch 10 terminal S
D2	SW10T	Analog switch 10 terminal T
D3	NC	No connection
D4	$\mathrm{D}_{\text {OUT }}$	Data out logic output
D5	$\mathrm{V}_{\text {LL }}$	Logic supply voltage
D6	GND	Ground
D7	CLR	Latch clear logic input
D8	MODE	Logic input to decide the switching mode. L = bank switching, $\mathrm{H}=$ Individual switching.
D9	NC	No connection
D10	SW22T	Analog switch 22 terminal T
D11	SW22S	Analog switch 22 terminal S
E1	SW9S	Analog switch 9 terminal S
E2	SW9T	Analog switch 9 terminal T
E3	NC	No connection
E4	$\mathrm{D}_{\text {IN }} / \mathrm{A} \bar{B}$	Data in logic input when individual switching mode, logic input to select EVEN SWs bank or ODD SWs bank when bank switching mode.
E5	CLK	Clock logic input for shift register.
E6	GND	Ground
E7	$\overline{\text { STBY }}$	Logic input for standby state, L = Standby mode (default), H = Normal operation.
E8	$\overline{\text { LE/EN }}$	Latch enable logic input, low active when individual switching mode. Enable logic input when bank switching mode.
E9	NC	No connection
E10	SW23T	Analog switch 23 terminal T
E11	SW23S	Analog switch 23 terminal S
F1	SW8S	Analog switch 8 terminal S
F2	SW8T	Analog switch 8 terminal T
F3	NC	No connection

TABLE 2-1: (CONTINUED)PIN FUNCTION TABLE

Pin Number	Symbol	Description
F4	DGND	Digital Ground
F5~F8	GND	Ground
F9	NC	No connection
F10	SW24T	Analog switch 24 terminal T
F11	SW24S	Analog switch 24 terminal S
G1	SW7S	Analog switch 7 terminal S
G2	SW7T	Analog switch 7 terminal T
G3	NC	No connection
G4~G8	GND	Ground
G9	NC	No connection
G10	SW25T	Analog switch 25 terminal T
G11	SW25S	Analog switch 25 terminal S
H1	SW6S	Analog switch 6 terminal S
H2	SW6T	Analog switch 6 terminal T
H3	NC	No connection
H4~H8	GND	Ground
H9	NC	No connection
H10	SW26T	Analog switch 26 terminal T
H11	SW26S	Analog switch 26 terminal S
J1	V_{DD}	Positive supply voltage
J2	$\mathrm{V}_{\text {SS }}$	Negative supply voltage
J3~9	NC	No connection
J10	$\mathrm{V}_{\text {SS }}$	Negative supply voltage
J11	V_{DD}	Positive supply voltage
K1	SW5T	Analog switch 5 terminal T
K2	SW4T	Analog switch 4 terminal T
K3	SW3T	Analog switch 3 terminal T
K4	SW2T	Analog switch 2 terminal T
K5	SW1T	Analog switch 1 terminal T
K6	SWOT	Analog switch 0 terminal T
K7	SW31T	Analog switch 31 terminal T
K8	SW30T	Analog switch 30 terminal T
K9	SW29T	Analog switch 29 terminal T
K10	SW28T	Analog switch 28 terminal T
K11	SW27T	Analog switch 27 terminal T
L1	SW5S	Analog switch 5 terminal S
L2	SW4S	Analog switch 4 terminal S
L3	SW3S	Analog switch 3 terminal S
L4	SW2S	Analog switch 2 terminal S
L5	SW1S	Analog switch 1 terminal S
L6	SW0S	Analog switch 0 terminal S
L7	SW31S	Analog switch 31 terminal S
L8	SW30S	Analog switch 30 terminal S
L9	SW29S	Analog switch 29 terminal S

TABLE 2-1: (CONTINUED)PIN FUNCTION TABLE

Pin Number	Symbol	Description
L10	SW28S	Analog switch 28 terminal S
L11	SW27S	Analog switch 27 terminal S

3.0 TEST CIRCUIT EXAMPLES

This section details a few example of test circuits.

FIGURE 3-1: Switch Off Bias per Switch.

FIGURE 3-2:
DC Offset Switch ON/OFF.

FIGURE 3-3: $\quad T_{\text {ON }} / T_{\text {OFF }}$ Test Circuit.

FIGURE 3-4: TX Pulse Width.

FIGURE 3-5: OFF Isolation SWS to SWT.

FIGURE 3-6: \quad Off Isolation SWT to SWS.

FIGURE 3-7: Switch Crosstalk.

FIGURE 3-8:
Output Voltage Spike.

FIGURE 3-9: Charge Injection.

4.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 4-2: $\quad I_{D D} / I_{S S}$ vs. Switching
Frequency.

FIGURE 4-5: $\quad I_{L L Q} / I_{L L S}$ vs. Temperature.

FIGURE 4-6: $\quad T_{\text {ON OFF }}$ vs. Temperature.

FIGURE 4-7: ILL vs. CLK Frequency.

Load.

5.0 DEVICE DESCRIPTION

5.1 Overview

The HV2070 is an L-Switch ${ }^{\text {TM }}$ architecture, low harmonic distortion, low charge injection, 32-channel, high-voltage analog switch that does not require highvoltage supplies.
The device requires only $\pm 6 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$ low-voltage supplies and no high-voltage supplies. However, all of the analog switches can transmit $\pm 100 \mathrm{~V}$ high-voltage pulses with typical 4.5Ω on-resistance and 100 MHz bandwidth for small signals. The low on-resistance
makes HV2070 ideal for applications such as shear wave elastography and HIFU that require high power dissipation.
The device has two digital logics and controls for two switch control modes which are individual switching mode and bank switching mode.
Figure 5-1 shows a typical medical ultrasound image system consisting of 64 channels of transmit pulsers, 64 channels of receivers (LNA and ADC), and 64 channels of T / R switches connecting to 192 elements of an ultrasound probe via a HV2XXX high-voltage analog switch array.

FIGURE 5-1: \quad Typical Medical Ultrasound Imaging System.

5.2 Individual Switching Mode and Bank Switching Mode

The HV2070 has two logic circuitries to support two switching modes determined by MODE pin logic input. One mode is individual switching mode, and the other mode is bank switching mode. When MODE pin is High, the device operates in individual switching mode
and can control 32-channel SPST switches individually through digital serial interface. When MODE pin is Low, the device operates in bank switching mode that works as a 16PDT switch for probe selection. Table 5-1 shows the functional difference of logic pins in the two modes. When MODE input is changed from Low to High, all the shift registers are reset to zero.

TABLE 5-1: LOGIC PINS AT INDIVIDUAL SWITCHING VS BANK SWITCHING

Pin Name	Individual Switching Mode		Bank Switching Mode	
	Function	Description (MODE=H)	Function	Description (MODE=L)
$\overline{\text { STBY }}$	$\overline{\text { STBY }}$	L = Standby mode (default), H = Normal operation	$\overline{\text { STBY }}$	L = Standby mode (default), $H=$ Normal operation

Pin Name	Individual Switching Mode		Bank Switching Mode	
	Function	Description (MODE=H)	Function	Description (MODE=L)

5.3 Individual Switching Mode Logic Input Timing

When the MODE pin logic input is High, the HV2070 operates in the individual switching mode. The HV2070 has a digital serial interface consisting of Data In ($\mathrm{D}_{\mathrm{IN}} / \mathrm{A} \overline{\bar{B}}$), Clock (CLK), Data Out ($\mathrm{D}_{\mathrm{OUT}}$), Latch Enable (LE/EN) and Clear (CLR) for the individual switching mode. The digital circuits are supplied by V_{LL}. The serial clock frequency is up to 66 MHz .

The switch state configuration data is shifted into the shift registers on the rising edge (low-to-high transition) of the clock. The Switch Configuration bit of SW31 is shifted in first, and the Configuration bit of SWO is shifted in last. To change all the switch states at the same time, the Latch Enable Input ($\overline{\mathrm{LE}} / \mathrm{EN}$) should remain high, while the 32-bit Data In signal is shifted into the 32 -bit register. After the valid 32 -bit data completes shifting into the shift registers, the high-to-low transition of the $\overline{\mathrm{LE}} / \mathrm{EN}$ signal transfers the contents of the shift registers into the latches. Finally, setting the $\overline{\mathrm{LE}} / \mathrm{EN}$ high again, allows all the latches to keep the current state while new data can now be shifted into the shift registers without disturbing the latches.

It is recommended to change all the latch states at the same time through this method to avoid possible clock feed through noise (see Figure 5-2 for details).
When the CLR input is set high, it resets the data of all 32 latches to low. Consequently, all the high-voltage switches are set to an OFF state. However, the CLR signal does not affect the contents of the shift register, so the shift register can operate independently of the CLR signal. Therefore, when the CLR input is low, the shift register still retains the previous data.

FIGURE 5-2: Latch Enable Timing Diagram.

5.4 Multiple Devices Connection in Individual Switching Mode

The serial input interface of the HV2070 allows multiple devices to daisy-chain together. In this configuration, Dout of a device is connected to the $D_{I N} / A \bar{B}$ of the subsequent device, and so forth. The last Dout of the daisy-chained HV2070 can be either floating or fed back to an FPGA to check the previously stored shift register data.
To control all the high-voltage analog switch states in daisy-chained N devices, N -times 32 clocks and N -times 32 bits of data are shifted into shift registers, while $\overline{L E} / E N$ remains high and CLR remains low. After all the data finishes shifting in, one single negative pulse of $\overline{\mathrm{LE} / E N}$ transfers the data from all shift registers to all the latches simultaneously. Consequently, all N times 32 high-voltage analog switches change states simultaneously.

5.5 Bank Switching Mode

When the mode pin logic input is Low, the HV2070 operates in the bank switching mode.
The $D_{I N} / A \bar{B}$ pin is used as A / \bar{B} input and $\overline{L E} / E N$ pin is used as EN input in the bank switching mode. The CLR and CLK logic inputs are not used and recommended
to drive logic low. The $\mathrm{D}_{\text {OUt }}$ pin is in a high-impedance state. See Table 1-1 for details on bank switching mode.
The EN function allows the HV2070 to be configured as either a $2: 1$ or $4: 1$ multiplexer/demultiplexer. The HV2070 can replace the relay in the medical ultrasound system. Compared to a mechanical relay, the HV2070 is a faster switching, less power consuming and no audible noise emitting switch. Figure $5-3$ shows an application example of 4 probe selection configuration using HV2070 bank switching mode. Please note that the MODE pin is connected to GND.

FIGURE 5-3:
Example of Bank Switching for 4 Probe Selection

5.6 Standby Mode

To reduce the current consumption during the idle time, HV2070 includes Standby mode. If the STBY logic input is Low, the device is in Standby mode to reduce the current consumption by shutting down most of the circuity. If the $\overline{\text { STBY }}$ logic input is changed from Low to High, the devices are out of Standby mode and the digital logic circuitry starts working normally after the wake up time, $t_{\text {wu }}$. Figure 5-4 and Figure 5-5 show the Standby mode timing diagram at Bank Switching mode and Individual switching mode respectively. The default logic condition is standby state. The STBY logic input has the highest priority in logic control. See Table 1-1 for details.

FIGURE 5-4: \quad Standby Mode Timing Diagram at Bank Switching Mode.

FIGURE 5-5: Standby Mode Timing Diagram at Individual Switching Mode.

5.7 Power-Up Sequence

The HV2070 device has a recommended power-up sequence. It is recommended that V_{SS} and V_{DD} are powered up first, and the $V_{L L}$ is powered up. The power-down sequence is in reverse order of the power-up sequence. During the power-up/down period, all the analog switch inputs should be within between V_{DD} and V_{SS} or floating.

5.8 Layout Considerations

The HV2070 device has two separate ground connections. DGND is the ground connection for digital circuitry and GND is the ground connection for analog switches and substrate. It is important to have a good PCB layout that minimizes noise and ground bounce. It is recommended to use two separate ground planes in the PCB and to connect the ground planes at the return terminal of the input power line. See Figure 5-6.
It is recommended that $0.1 \mu \mathrm{~F}$ or larger ceramic decoupling capacitors, with low ESR (Equivalent Series Resistance) and appropriate voltage ratings, be connected between ground and power supplies as
shown in Figure 5-6. The decoupling capacitor of V_{LL} should be connected to DGND, and the decoupling capacitors of $V_{D D}$ and $V_{S S}$ should be connected to GND. These decoupling capacitors should be placed as close as possible to the device.

FIGURE 5-6: Layout Guidelines.

HV2070

NOTES:

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

121-Ball TFBGA(10 $\times 10 \times 1.1 \mathrm{~mm})$

Legend: $X X$...X Product Code or Customer-specific information $Y \quad$ Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
e8 Pb-free JEDEC designator for Matte Tin (Sn)

* This package is Pb -free. The Pb -free JEDEC designator (e8) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

121-Ball Thin, Fine Pitch Ball Grid Array (AJA) - 10×10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1216A Sheet 1 of 2

121-Ball Thin, Fine Pitch Ball Grid Array (AJA) - 10x10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Terminals	N	121		
Pitch	e	0.80 BSC		
Overall Height	A	-	-	1.20
Terminal (ball) height	A 1	0.270	-	0.37
Substrate Thickness	S	0.26 REF		
Mold Cap Thickness	M	0.53 REF		
Overall Length	D	10.00 BSC		
Overall Width	E	10.00 BSC		
Terminal Width	b	0.38	0.40	0.48

Notes:

1. Terminal A1 visual index feature may vary, but must be located within the hatched area.
2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

121-Ball Thin, Fine Pitch Ball Grid Array (AJA) - 10×10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS								
Dimension Limits						MIN			NOM	MAX
Contact Pitch	E	0.80 BSC								
Contact Pad Spacing	C 1		8.00							
Contact Pad Spacing	C 2		8.00							
Contact Pad Diameter (X121)	X			0.40						

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

APPENDIX A: REVISION HISTORY

Revision A (December 2017)

- Original Release of this Document.

HV2070

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

HV2070

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its $P I C^{\circledR}$ MCUs and dsPIC® DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2017, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-2471-0

Microchip

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/ support
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

