ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

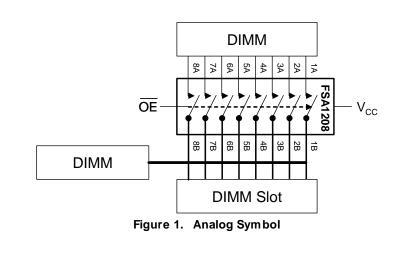
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

FSA1208 Low-Power, Eight-Port, High-Speed Isolation Switch

Features

- Low On Capacitance: 6 pF Typical
- Low On Resistance: 15 Ω Typical
- Low Pow er Consumption: 1 A Maximum
- 10 µA Maximum I_{CCT} over an Expanded Voltage Range (V_{IN}=2.3 V, V_{CC}=4.3 V)
- Wide -3 dB Bandw idth: > 400 MHz
- Packaged in Space-Saving 20-Lead MLP (2.5 x 4.5 mm)
- 7.5 kV ESD Rating; >16 kV Pow er/GND ESD Rating
- Low C_{OFF} Capacitance: 2.5 pF Typical

Applications


DIMM DDR Memory

Description

The FSA1208 is a low-power, eight-port, high-speed switch. This part is configured as a single-pole, single-throw switch and is optimized for isolating a high-speed source, such as a DDR memory bus. The FSA1208 features an extremely low on capacitance (C_{ON}) of 6 pF Superior channel-to-channel crosstalk minimizes interference.

The FSA1208 contains special circuitry on the A & B pins that allows the device to withstand an over-voltage condition. This device is also designed to minimize current consumption even when the control voltage applied to the /OE pin is lower than the supply voltage (V_{CC}). Applications include port isolation and switching in DDR memory modules, portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Part Number	Top Mark	Operating Temperature Range	Package
FSA1208BQX	F1208	-40 to +85°C	20-Lead, Quad, Molded Leadless Package (MLP), 2.5 x 4.5 mm

Ordering Information

Pin Configurations B1 B2 В3 B5 B6 B7 B8 B4 12 15 19 18 17 16 14 13 NC /OE 20 11 GND VCC 1 10 A1 A2 A6 A7 A8 A3 A5 A4 2 3 5 6 7 8 9 4

Figure 2. Pin Assignments for MLP (Top Through View)

Pin Definitions

Pin #	Name	Description
20	/OE	Sw itch Enable
2-9	A1-A8	A Side of Bus
12-19	B8-B1	B Side of Bus
11	NC	No Connection
1	VCC	Pow er
10	GND	Ground

Truth Table

/OE	Function
HIGH	Disconnect
LOW	A1-A8=B1-B8

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
Vcc	Supply Voltage		-0.50	+5.25	V
VCNTRL				Vcc	V
V _{SW}	DC Switch I/O Voltage ⁽¹⁾	-0.50	5.25	V	
lк	DC Input Diode Current	-50		mA	
Юυт	DC Output Current		50	mA	
T _{STG}	Storage Temperature		-65	+150	°C
		All Pins		7.5	
ESD	Human Body Model, JEDEC: JESD22-A114	I/O to GND		8	kV
200		Pow er to GND		16	
	Charged Device Model, JEDEC: JESD22-C10		2		

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	2.3	4.3	V
Vcntrl ⁽²⁾	Control Input Voltage (S, /OE)	0	Vcc	V
V _{SW}	V _{SW} Switch I/O Voltage		Vcc	V
TA	Operating Temperature	-40	+85	°C

Note:

2. The control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =- 40°C to +85°C			Units
Symbol				Min.	Тур.	Max.	Units
Vк	Clamp Diode Voltage	l _{IN} =-18 mA	2.5			-1.2	V
ViH	Innut Valtaga High		2.3 to 3.6	1.3			V
VIH	Input Voltage High		4.3	1.7			V
Vil	Input Voltage Low		2.3 to 3.6			0.5	V
VIL			4.3			0.7	V
l _{IN}	Control Input Leakage	V _{SW} =0 to V _{CC}	4.3	-1		1	μA
loz	Off State Leakage	$0 \le A, B \le 3.6 V$	4.3	-2		2	μA
Ron	Switch On Resistance ⁽³⁾	V _{SW} =0 V, I _{ON} =-10 mA Figure 3	2.5		7		Ω
NON	Switch Of Resistance	V _{SW} =1.8 V, I _{ON} =-10 mA Figure 3	2.5		15		Ω
lcc	Quiescent Supply Current	V _{IN} =0 or V _{CC} , I _{OUT} =0	4.3			1	μA
Ісст	Increase in I_{CC} Current Per Control Voltage and V_{CC}	V _{IN} =1.8 V	2.7			10	μA

Note:

3. Measured by the voltage drop betw een A and B pins at the indicated current through the switch. On resistance is determined by the low er of the voltage on the two (A or B ports).

AC Electrical Characteristics

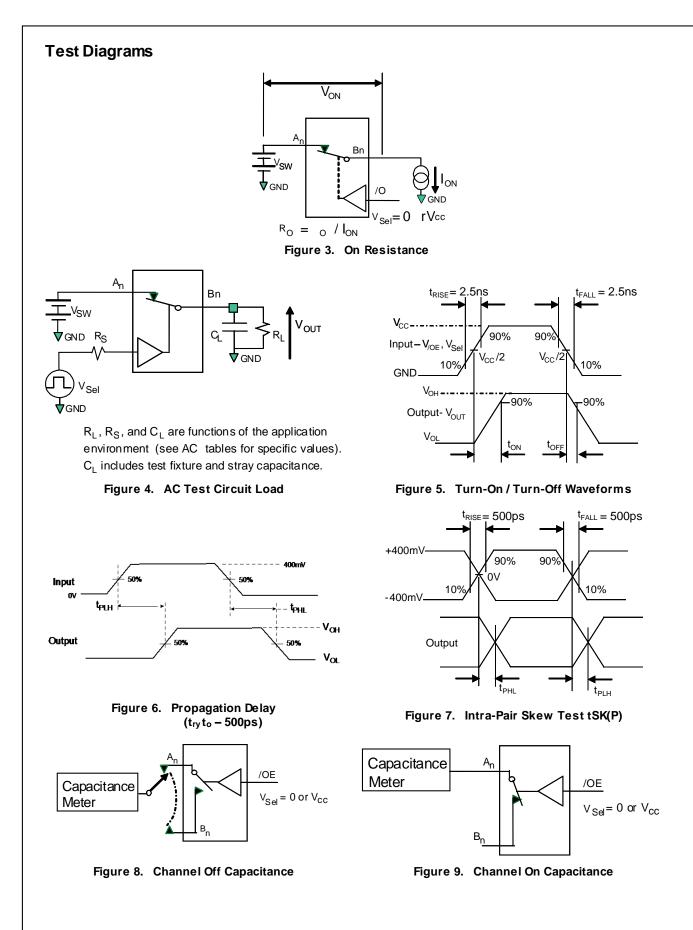
All typical values are for V_{CC}=2.5 V at 25°C unless otherwise specified.

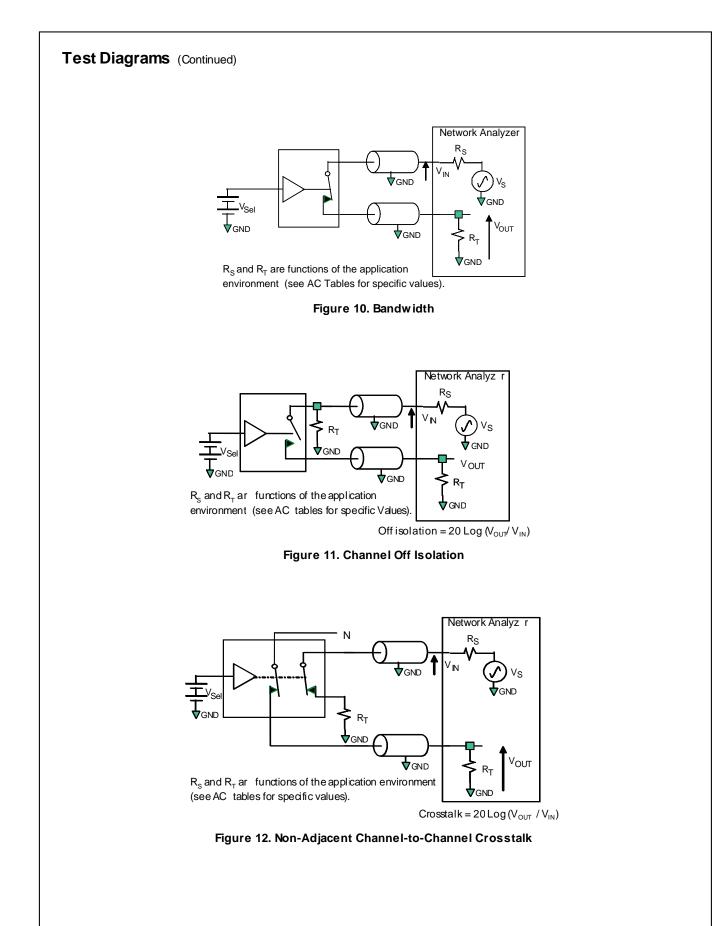
Symbol	Parameter	Conditions	V _{cc} (V)	T _A =- 4	Units		
Symbol				Min.	Тур.	Max.	Units
t _{on}	Turn-On Time, /OE to Output	$R_L=50 \Omega$, $C_L=5 pF$ $V_{SW}=1.8 V$ Figure 4, Figure 5	2.3 to 3.6		15	34	ns
t _{uff}	Turn-Off Time, /OE to Output	R_L =50 Ω , C_L =5 pF V _{SW} =1.8 V Figure 4, Figure 5	2.3 to 3.6		12	25	ns
t _{ad}	Propagation Delay ⁽⁴⁾	R _L =50 Ω, C _L =5 pF Figure 4, Figure 6	3.3		0.35		ns
O _{IRR}	Off Isolation	R _L =50 Ω, f=400 MHz Figure 11	2.3 to 3.6		-40		dB
Xtalk	Non-Adjacent Channel Crosstalk	R _L =50 Ω, f=100 MHz Figure 12	2.3 to 3.6		-40		dB
BW	-3dB Bandwidth	R∟=50 Ω, C∟=0 pF Figure 10	2.3 to 3.6		1000		MHz
211		R _L =50 Ω, C _L =5 pF Figure 10	2.0 10 0.0		750		MHz

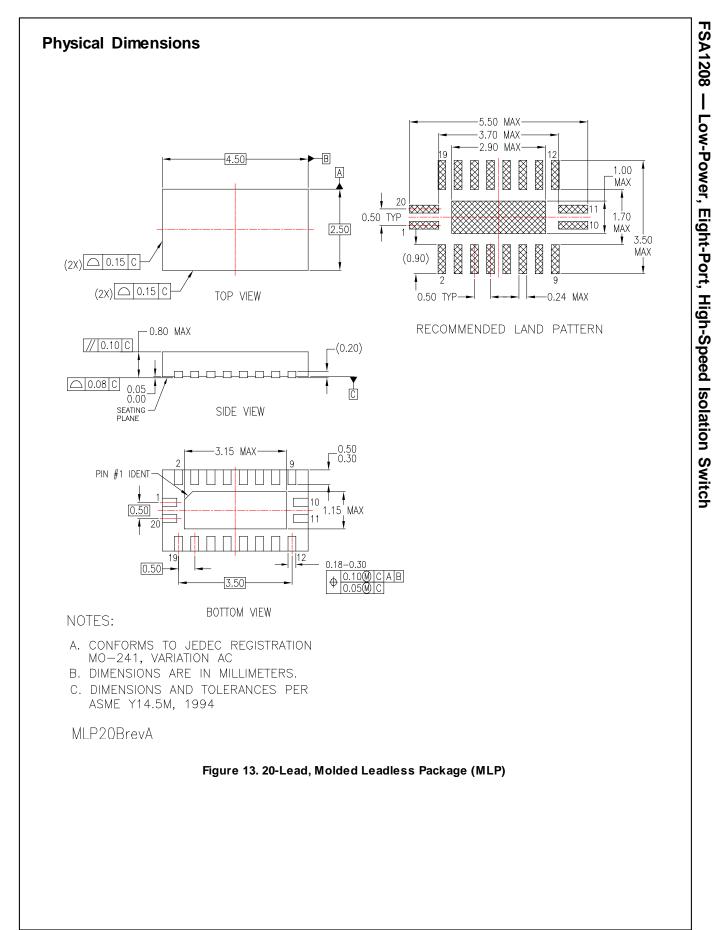
Note:

4. Guaranteed by characterization.

High-Speed-Related AC Electrical Characteristics


Symbol	Parameter	Conditions	V _{cc} (V)	T _A =- 40°C to +85°C			Units
Symbol				Min.	Тур.	Max.	Units
t _{SK(O)}	Channel-to-Channel Skew ⁽⁵⁾	C _L =5 pF	3.3		40	80	ps
t _{SK(P)}	Skew of Opposite Transitions of the Same Output ⁽⁵⁾	CL=5 pF	3.3		15	40	ps
t _{SK(PKG)}	Package-to-Package Skew ⁽⁵⁾	C _L =5 pF	3.3		60	100	ps


Note:


5. Guaranteed by characterization.

Capacitance

Symbol	Parameter	Conditions	T _A =- 40°C to +85°C			Units
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Units
C _{IN}	Control Pin Input Capacitance	V _{CC} =0.2 V, f=1 MHz		2.0		
C _{ON}	D+/D- On Capacitance	V _{CC} =2.5 V,/OE=0 V, f=1 MHz Figure 9		6.0		pF
COFF	D1n, D2n Off Capacitance	V _{CC} and /OE=2.5 V, f=1 MHz Figure 8		2.5		

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor path sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and it

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada. Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semic onductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative