ReNESAS

R1Q2A7236ABG R1Q2A7218ABG R1Q2A7209ABG

Description

The R1Q2A7236 is a $2,097,152$-word by 36 -bit, the R1Q2A7218 is a $4,194,304$-word by 18 -bit, and the R1Q2A7209 is a $8,388,608$-word by 9 -bit synchronous quad data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell. It integrates unique synchronous peripheral circuitry and a burst counter. All input registers are controlled by an input clock pair (K and $/ \mathrm{K}$) and are latched on the positive edge of K and $/ \mathrm{K}$. These products are suitable for applications which require synchronous operation, high speed, low voltage, high density and wide bit configuration. These products are packaged in 165-pin plastic FBGA package.

Features

- Power Supply
- 1.8 V for core $\left(\mathrm{V}_{\mathrm{DD}}\right), 1.4 \mathrm{~V}$ to V_{DD} for $\mathrm{I} / \mathrm{O}\left(\mathrm{V}_{\mathrm{DDQ}}\right)$
- Clock
- Fast clock cycle time for high bandwidth
- Two input clocks (K and $/ \mathrm{K}$) for precise DDR timing at clock rising edges only
- Two input clocks for output data (C and /C) to minimize clock skew and flight time mismatches
- Two output echo clocks (CQ and /CQ) simplify data capture in high-speed systems
- Clock-stop capability with $\mu \mathrm{s}$ restart
- I/O
- Separate independent read and write data ports with concurrent transactions
- 100% bus utilization DDR read and write operation
- HSTL I/O
- User programmable output impedance
- DLL/PLL circuitry for wide output data valid window and future frequency scaling

- Function

- Two-tick burst for low DDR transaction size
- Internally self-timed write control
- Simple control logic for easy depth expansion
- JTAG 1149.1 compatible test access port

- Package

- 165 FBGA package ($15 \times 17 \times 1.4 \mathrm{~mm}$)

[^0]
Part Number Definition

Column No.	0	1	2	3	4	5	6		7	8	9	10	11	-	12	13	14	15	16
Example	R	1	Q	2	A	7	2		1	8	A	B	G	-	4	0	R	B	0
	The above part number is just example for 72M QDRII B2 $\times 18250 \mathrm{MHz}$, 15x17mm PKG, Pb-free part.																		

72M QDR/DDR SRAM (R1Q*A72 Series) Lineup

- Renesas supports or plans to support the parts listed below.

Notes:

1. " v " represents the package size. If " v " $=$ " G " then size is $15 \times 17 \mathrm{~mm}$, and if " v " $=$ " B " then $13 \times 15 \mathrm{~mm}$.
2. "yy" represents the speed bin. "R1QAA7236ABG-20" can operate at $500 \mathrm{MHz}(\mathrm{max})$ of frequency, for example.
3. The part which is not listed above is not supported, as of the day when this datasheet was issued,
in spite of the existence of the part number or datasheet.

Pin Arrangement

R1Q2A7236 series

	1	2	3	4	5	6	7	8	9	10	11
A	/CQ	NC	SA	/W	/BW2	/K	/BW1	/R	SA	NC	CQ
B	Q27	Q18	D18	SA	/BW3	K	/BW0	SA	D17	Q17	Q8
C	D27	Q28	D19	$\mathrm{V}_{S S}$	SA	SA	SA	$V_{S S}$	D16	Q7	D8
D	D28	D20	Q19	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$V_{S S}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{S S}$	Q16	D15	D7
E	Q29	D29	Q20	$\mathrm{V}_{\text {DDQ }}$	$\mathrm{V}_{\text {SS }}$	$V_{S S}$	$\mathrm{V}_{S S}$	$\mathrm{V}_{\text {DDQ }}$	Q15	D6	Q6
F	Q30	Q21	D21	$\mathrm{V}_{\text {DDQ }}$	$V_{D D}$	$V_{S S}$	$V_{D D}$	$V_{\text {DDQ }}$	D14	Q14	Q5
G	D30	D22	Q22	$\mathrm{V}_{\text {DDQ }}$	$V_{D D}$	$V_{S S}$	$V_{D D}$	$\mathrm{V}_{\text {DDQ }}$	Q13	D13	D5
H	/DOFF	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\text {DDQ }}$	$\mathrm{V}_{\mathrm{DDQ}}$	$V_{D D}$	$V_{S S}$	$V_{D D}$	$V_{\text {DDQ }}$	$\mathrm{V}_{\text {DDQ }}$	$\mathrm{V}_{\text {REF }}$	ZQ
J	D31	Q31	D23	$\mathrm{V}_{\text {DDQ }}$	$V_{D D}$	$V_{S S}$	$V_{D D}$	$V_{\text {DDQ }}$	D12	Q4	D4
K	Q32	D32	Q23	$\mathrm{V}_{\text {DDQ }}$	$V_{D D}$	$V_{S S}$	$V_{D D}$	$V_{\text {DDQ }}$	Q12	D3	Q3
L	Q33	Q24	D24	$V_{\text {DDQ }}$	$\mathrm{V}_{S S}$	$V_{S S}$	$\mathrm{V}_{S S}$	$V_{\text {DDQ }}$	D11	Q11	Q2
M	D33	Q34	D25	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{S S}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{S S}$	$\mathrm{V}_{\text {SS }}$	D10	Q1	D2
N	D34	D26	Q25	$\mathrm{V}_{\text {SS }}$	SA	SA	SA	$V_{S S}$	Q10	D9	D1
P	Q35	D35	Q26	SA	SA	C	SA	SA	Q9	D0	Q0
R	TDO	TCK	SA	SA	SA	/C	SA	SA	SA	TMS	TDI

(Top View)

Notes: 1. Address expansion order for future higher density SRAMs: $10 \mathrm{~A} \rightarrow 2 \mathrm{~A} \rightarrow 7 \mathrm{~A} \rightarrow 5 \mathrm{~B}$.
2. NC pins can be left floating or connected to $0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{DDQ}}$.

R1Q2A7218 series

	1	2	3	4	5	6	7	8	9	10	11
A	/CQ	NC	SA	/W	/BW1	/K	NC	/R	SA	SA	CQ
B	NC	Q9	D9	SA	NC	K	/BW0	SA	NC	NC	Q8
C	NC	NC	D10	$\mathrm{V}_{\text {SS }}$	SA	SA	SA	$V_{\text {SS }}$	NC	Q7	D8
D	NC	D11	Q10	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$V_{S S}$	$\mathrm{V}_{\text {SS }}$	$V_{\text {SS }}$	NC	NC	D7
E	NC	NC	Q11	$V_{\text {DDQ }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {DDQ }}$	NC	D6	Q6
F	NC	Q12	D12	$V_{\text {DDQ }}$	$V_{D D}$	$V_{S S}$	$V_{D D}$	$V_{\text {DDQ }}$	NC	NC	Q5
G	NC	D13	Q13	$V_{\text {DDQ }}$	$V_{D D}$	$V_{S S}$	$V_{D D}$	$V_{\text {DDQ }}$	NC	NC	D5
H	/DOFF	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\text {DDQ }}$	$V_{\text {DDQ }}$	$V_{D D}$	$V_{S S}$	$V_{D D}$	$V_{\text {DDQ }}$	$\mathrm{V}_{\text {DDQ }}$	$\mathrm{V}_{\text {REF }}$	ZQ
J	NC	NC	D14	$\mathrm{V}_{\text {DDQ }}$	$V_{D D}$	$V_{S S}$	$V_{D D}$	$V_{\text {DDQ }}$	NC	Q4	D4
K	NC	NC	Q14	$\mathrm{V}_{\text {DDQ }}$	$V_{D D}$	$V_{S S}$	$V_{D D}$	$\mathrm{V}_{\text {DDQ }}$	NC	D3	Q3
L	NC	Q15	D15	$V_{\text {DDQ }}$	$\mathrm{V}_{\text {SS }}$	$V_{S S}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {DDQ }}$	NC	NC	Q2
M	NC	NC	D16	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$V_{S S}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	NC	Q1	D2
N	NC	D17	Q16	$\mathrm{V}_{\text {SS }}$	SA	SA	SA	$\mathrm{V}_{S S}$	NC	NC	D1
P	NC	NC	Q17	SA	SA	C	SA	SA	NC	D0	Q0
R	TDO	TCK	SA	SA	SA	/C	SA	SA	SA	TMS	TDI

(Top View)

Notes: 1. Address expansion order for future higher density SRAMs: $10 A \rightarrow 2 A \rightarrow 7 A \rightarrow 5 B$.
2. NC pins can be left floating or connected to $0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{DDQ}}$.

Pin Arrangement

R1Q2A7209 series

	1	2	3	4	5	6	7	8	9	10	11
A	/CQ	SA	SA	/W	NC	/K	NC	/R	SA	SA	CQ
B	NC	NC	NC	SA	NC	K	/BW	SA	NC	NC	Q4
C	NC	NC	NC	$\mathrm{V}_{\text {SS }}$	SA	SA	SA	$\mathrm{V}_{\text {SS }}$	NC	NC	D4
D	NC	D5	NC	$\mathrm{V}_{\text {SS }}$	NC	NC	NC				
E	NC	NC	Q5	$V_{\text {DDQ }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$V_{\text {DDQ }}$	NC	D3	Q3
F	NC	NC	NC	$V_{\text {DDQ }}$	$V_{D D}$	$\mathrm{V}_{\text {SS }}$	$V_{D D}$	$V_{\text {DDQ }}$	NC	NC	NC
G	NC	D6	Q6	$V_{\text {DDQ }}$	$V_{D D}$	$\mathrm{V}_{\text {SS }}$	$V_{D D}$	$V_{\text {DDQ }}$	NC	NC	NC
H	/DOFF	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\mathrm{DDQ}}$	$V_{\text {DDQ }}$	$V_{D D}$	$\mathrm{V}_{\text {SS }}$	$V_{D D}$	$\mathrm{V}_{\text {DDQ }}$	$\mathrm{V}_{\text {DDQ }}$	$\mathrm{V}_{\text {REF }}$	ZQ
J	NC	NC	NC	$V_{\text {DDQ }}$	$V_{D D}$	$\mathrm{V}_{\text {SS }}$	$V_{D D}$	$V_{\text {DDQ }}$	NC	Q2	D2
K	NC	NC	NC	$V_{\text {DDQ }}$	$V_{D D}$	$\mathrm{V}_{\text {SS }}$	$V_{D D}$	$V_{\text {DDQ }}$	NC	NC	NC
L	NC	Q7	D7	$\mathrm{V}_{\text {DDQ }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{S S}$	$\mathrm{V}_{\text {DDQ }}$	NC	NC	Q1
M	NC	NC	NC	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	$V_{S S}$	$V_{\text {SS }}$	NC	NC	D1
N	NC	D8	NC	$\mathrm{V}_{\text {SS }}$	SA	SA	SA	$V_{\text {SS }}$	NC	NC	NC
P	NC	NC	Q8	SA	SA	C	SA	SA	NC	D0	Q0
R	TDO	TCK	SA	SA	SA	/C	SA	SA	SA	TMS	TDI

(Top View)
Notes: 1. Address expansion order for future higher density SRAMs: $10 \mathrm{~A} \rightarrow 2 \mathrm{~A} \rightarrow 7 \mathrm{~A} \rightarrow 5 \mathrm{~B}$.
2. NC pins can be left floating or connected to $0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{DDQ}}$.

Pin Descriptions

Name	I/O type	Descriptions	Notes
SA	Input	Synchronous address inputs: These inputs are registered and must meet the setup and hold times around the rising edge of K. All transactions operate on a burst-of-four words (two clock periods of bus activity). These inputs are ignored when device is deselected.	
/R	Input	Synchronous read: When low, this input causes the address inputs to be registered and a READ cycle to be initiated. This input must meet setup and hold times around the rising edge of K , and is ignored on the subsequent rising edge of K .	
/W	Input	Synchronous write: When low, this input causes the address inputs to be registered and a WRITE cycle to be initiated. This input must meet setup and hold times around the rising edge of K , and is ignored on the subsequent rising edge of K .	
/BW ${ }_{\text {x }}$	Input	Synchronous byte writes: When low, these inputs cause their respective byte to be registered and written during WRITE cycles. These signals are sampled on the same edge as the corresponding data and must meet setup and hold times around the rising edges of K and $/ K$ for each of the two rising edges comprising the WRITE cycle. See Byte Write Truth Table for signal to data relationship.	
K, /K	Input	Input clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data on the rising edge of K and the rising edge of $/ \mathrm{K}$. $/ \mathrm{K}$ is ideally 180 degrees out of phase with K . All synchronous inputs must meet setup and hold times around the clock rising edges. These balls cannot remain $\mathrm{V}_{\text {REF }}$ level.	
$\left\|\begin{array}{c} \text { C, /C } \\ \text { (II only) } \end{array}\right\|$	Input	Output clock: This clock pair provides a user-controlled means of tuning device output data. The rising edge of $/ \mathrm{C}$ is used as the output timing reference for the first and third output data. The rising edge of C is used as the output timing reference for second and fourth output data. Ideally, /C is 180 degrees out of phase with C. C and /C may be tied high to force the use of K and $/ K$ as the output reference clocks instead of having to provide C and /C clocks. If tied high, C and $/ \mathrm{C}$ must remain high and not to be toggled during device operation. These balls cannot remain $\mathrm{V}_{\text {REF }}$ level.	1
/DOFF	Input	DLL/PLL disable: When low, this input causes the DLL/PLL to be bypassed for stable, low frequency operation.	
$\begin{aligned} & \text { TMS } \\ & \text { TDI } \end{aligned}$	Input	IEEE1149.1 test inputs: 1.8 V I/O levels. These balls may be left not connected if the JTAG function is not used in the circuit.	
TCK	Input	IEEE1149.1 clock input: 1.8 V I/O levels. This ball must be tied to V_{SS} if the JTAG function is not used in the circuit.	

Notes:

1. R1Q2, R1Q3, R1Q4, R1Q5, R1Q6 series have C and /C pins. R1QA, R1QB, R1QC, R1QD, R1QE, R1QF, R1QG, R1QH, R1QJ, R1QK, R1QL, R1QM, R1QN, R1QP series do not have C, $/ C$ pins. In the series, K and $/ K$ are used as the output reference clocks instead of C and $/ C$. Therefore, hereafter, C and $/ \mathrm{C}$ represent K and $/ \mathrm{K}$ in this document.

Name	I/O type	Descriptions	Notes
ZQ	Input	Output impedance matching input: This input is used to tune the device outputs to the system data bus impedance. Q and CQ output impedance are set to $0.2 \times R Q$, where $R Q$ is a resistor from this ball to ground. This ball can be connected directly to $\mathrm{V}_{\mathrm{DDQ}}$, which enables the minimum impedance mode. This ball cannot be connected directly to $\mathrm{V}_{\text {SS }}$ or left unconnected. In ODT (On Die Termination) enable devices, the ODT termination values tracks the value of RQ. The ODT range is selected by ODT control input.	
$\left\lvert\, \begin{gathered} \text { ODT } \\ (\text { (II+ only) } \end{gathered}\right.$	Input	ODT control: When low; [Option 1] Low range mode is selected. The impedance range is between 52Ω and 105Ω (Thevenin equivalent), which follows $0.3 \times$ $R Q$ for $175 \Omega \leq R Q \leq 350 \Omega$. [Option 2] ODT is disabled. When high; High range mode is selected. The impedance range is between 105Ω and 150Ω (Thevenin equivalent), which follows 0.6 $\times R Q$ for $175 \Omega \leq R Q \leq 250 \Omega$. When floating; [Option 1] High range mode is selected. [Option 2] ODT is disabled.	1
D_{0} to D_{n}	Input	Synchronous data inputs: Input data must meet setup and hold times around the rising edges of K and $/ K$ during WRITE operations. See Pin Arrangement figures for ball site location of individual signals. The $\times 9$ device uses D0~D8. D9~D35 should be treated as NC pin. The $\times 18$ device uses D0~D17. D18~D35 should be treated as NC pin. The $\times 36$ device uses D0~D35.	
CQ, /CQ	Output	Synchronous echo clock outputs: The edges of these outputs are tightly matched to the synchronous data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q tristates.	
TDO	Output	IEEE 1149.1 test output: 1.8 V I/O level.	
Q_{0} to Q_{n}	Output	Synchronous data outputs: Output data is synchronized to the respective C and $/ C$, or to the respective K and $/ K$ if C and $/ C$ are tied high. This bus operates in response to $/ \mathbb{R}$ commands. See Pin Arrangement figures for ball site location of individual signals. The $\times 9$ device uses Q0~Q8. Q9~Q35 should be treated as NC pin. The $\times 18$ device uses Q0~Q17. Q18~Q35 should be treated as NC pin. The $\times 36$ device uses Q0~Q35.	
$\begin{gathered} \text { QVLD } \\ (\text { (II }+ \text { only }) \end{gathered}$	Output	Valid output indicator: The Q Valid indicates valid output data. QVLD is edge aligned with $C Q$ and /CQ.	
$V_{D D}$	Supply	Power supply: 1.8 V nominal. See DC Characteristics and Operating Conditions for range.	2
$V_{\text {DDQ }}$	Supply	Power supply: Isolated output buffer supply. Nominally 1.5 V . See DC Characteristics and Operating Conditions for range.	2
$\mathrm{V}_{\text {ss }}$	Supply	Power supply: Ground.	2
$V_{\text {REF }}$	-	HSTL input reference voltage: Nominally $\mathrm{V}_{\text {DDQ }} / 2$, but may be adjusted to improve system noise margin. Provides a reference voltage for the HSTL input buffers.	
NC	-	No connect: These pins can be left floating or connected to $0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{DDQ}}$.	
Notes: 1. Renesas status: Option $1=$ Available, Option $2=$ Possible. 2. All power supply and ground balls must be connected for proper operation of the device.			

Block Diagram (R1Q2A7236 / R1Q2A7218 / R1Q2A7209 series)

Notes

1. C and /C pins do not exist in II + series parts.

General Description

Power-up and Initialization Sequence

- V_{DD} must be stable before K , /K clocks are applied.
- Recommended voltage application sequence : $\mathrm{V}_{\mathrm{SS}} \rightarrow \mathrm{V}_{\mathrm{DD}} \rightarrow \mathrm{V}_{\mathrm{DDQ}} \& \mathrm{~V}_{\mathrm{REF}} \rightarrow \mathrm{V}_{\mathrm{IN}} .\left(0 \mathrm{~V}\right.$ to $\left.\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDQ}}<200 \mathrm{~ms}\right)$
- Apply $\mathrm{V}_{\mathrm{REF}}$ after $\mathrm{V}_{\mathrm{DDQ}}$ or at the same time as $\mathrm{V}_{\mathrm{DDQ}}$.
- Then execute either one of the following three sequences.

1. Single Clock Mode (C and /C tied high)

- Drive /DOFF high (/DOFF can be tied high from the start).
- Then provide stable clocks (K, /K) for at least 1024 cycles (II series) or 20 us (II+ series). These meet the QDR common specification of 20 us. When the operating frequency is less than $180 \mathrm{MHz}, 2048$ cycles are required (II series).

2. Double Clock Mode (C and /C control outputs) (II series only)

- Drive /DOFF high (/DOFF can be tied high from the start)
- Then provide stable clocks (K, /K, C, /C) for at least 1024 cycles (II series).

This meets the QDR common specification of 20 us.
When the operating frequency is less than $180 \mathrm{MHz}, 2048$ cycles are required (II series).

3. DLL/PLL Off Mode (/DOFF tied low)

- In the "NOP and setup stage", provide stable clocks (K, /K) for at least 1024 cycles (II series) or 20 us (II+ series). These meet the QDR common specification of 20 us.

DLL/PLL Constraints

1. DLL/PLL uses K clock as its synchronizing input. The input should have low phase jitter which is specified as tKC var.
2. The lower end of the frequency at which the DLL/PLL can operate is 120 MHz . (Please refer to AC Characteristics table for detail.)
3. When the operating frequency is changed or /DOFF level is changed, setup cycles are required again.

Programmable Output Impedance

1. Output buffer impedance can be programmed by terminating the ZQ ball to V_{SS} through a precision resistor (RQ). The value of RQ is five times the output impedance desired. The allowable range of RQ to guarantee impedance matching with a tolerance of 15% is 250Ω typical. The total external capacitance of ZQ ball must be less than 7.5 pF .

K Truth Table

Operation	K	/R	/W	D or Q			
Write Cycle: Load address, input write data on consecutive K and $/ \mathrm{K}$ rising edges	\uparrow	\times	L	Data in			
					Input data	$\mathrm{D}(\mathrm{A}+0)$	$\mathrm{D}(\mathrm{A}+1)$
					nput clock	$\mathrm{K}(\mathrm{t}) \uparrow$	/K(t) \uparrow
Read Cycle: Load address, output read data on consecutive C and $/ \mathrm{C}$ rising edges	\uparrow	L	\times	Data out			
				Output data		Q(A+0)	Q(A+1)
				Input clock for Q	$\mathrm{RL}^{* 7}=1.5$	/C(t+1) \uparrow	$\mathrm{C}(\mathrm{t}+2) \uparrow$
					$\mathrm{RL}=2.0$	$\mathrm{C}(\mathrm{t}+2) \uparrow$	/C(t+2) \uparrow
					$\mathrm{RL}=2.5$	/C(t+2) \uparrow	$\mathrm{C}(\mathrm{t}+3) \uparrow$
NOP (No operation)	\uparrow	H	H	$\mathrm{D}=\times$ or $\mathrm{Q}=$ High-Z			
Standby (Clock stopped)	Stopped	\times	\times	Previous state			

Notes:

1. H : high level, L: low level, \times : don't care, \uparrow : rising edge.
2. Data inputs are registered at K and $/ \mathrm{K}$ rising edges. Data outputs are delivered at C and $/ \mathrm{C}$ rising edges, except if C and $/ \mathrm{C}$ are high, then data outputs are delivered at K and $/ \mathrm{K}$ rising edges.
3. $/ R$ and $/ W$ must meet setup/hold times around the rising edges (low to high) of K and are registered at the rising edge of K .
4. This device contains circuitry that will ensure the outputs will be in high-Z during power-up.
5. Refer to state diagram and timing diagrams for clarification.
6. When clocks are stopped, the following cases are recommended; the case of $K=$ low, $/ K=$ high, $C=$ low and $/ C=$ high, or the case of $K=$ high, $/ K=$ low, $C=$ high and $/ C=$ low. This condition is not essential, but permits most rapid restart by overcoming transmission line charging symmetrically.
7. RL = Read Latency (unit = cycle).

Byte Write Truth Table (x 36)

Operation	\mathbf{K}	/K	/BW0	/BW1	/BW2	/BW3
Write D0 to D35	\uparrow	-	L	L	L	L
	-	\uparrow	L	L	L	L
Write D0 to D8	\uparrow	-	L	H	H	H
	-	\uparrow	L	H	H	H
Write D9 to D17	\uparrow	-	H	L	H	H
	-	\uparrow	H	L	H	H
Write D18 to D26	\uparrow	-	H	H	L	H
	-	\uparrow	H	H	L	H
Write D27 to D35	\uparrow	-	H	H	H	L
	-	\uparrow	H	H	H	L
Write nothing	\uparrow	-	H	H	H	H
	-	\uparrow	H	H	H	H

Notes:

1. H: high level, L: low level, \uparrow : rising edge.
2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

Byte Write Truth Table (x 18)

Operation	\mathbf{K}	/K	/BW0	/BW1
Write D0 to D17	\uparrow	-	L	L
	-	\uparrow	L	L
Write D0 to D8	\uparrow	-	L	H
	-	\uparrow	H	H
Write D9 to D17	\uparrow	-	H	L
	-	\uparrow	H	L
Write nothing	\uparrow	-	H	H
	-	\uparrow		

Notes:

1. H : high level, L: low level, \uparrow : rising edge.
2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.

Byte Write Truth Table (x 9) Just Reference except R1Q2A**09 series

Operation	\mathbf{K}	IK	/BW
Write D0 to D8	\uparrow	-	L
	-	\uparrow	L
Write nothing	\uparrow	-	H
	-	\uparrow	H
Notes: 1. H: high level, L: low level, \uparrow : rising edge. 2. Assumes a WRITE cycle was initiated. /BWx can be altered for any portion of the BURST WRITE operation provided that the setup and hold requirements are satisfied.			

Bus Cycle State Diagram

Notes:

1. The address is concatenated with one additional internal LSB to facilitate burst operation. The address order is always fixed as: $x x x . . . x x x+0, x x x \ldots x x x+1$.
Bus cycle is terminated at the end of this sequence (burst count = 2).
2. Read and write state machines can be active simultaneously.
3. State machine control timing sequence is controlled by K .

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Notes
Input voltage on any ball	V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$ $(2.5 \mathrm{~V}$ max. $)$	V	1,4
Input/output voltage	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	-0.5 to $\mathrm{V}_{\mathrm{DDQ}}+0.5$ $(2.5 \mathrm{~V}$ max. $)$	V	1,4
Core supply voltage	V_{DD}	-0.5 to 2.5	V	1,4
Output supply voltage	$\mathrm{V}_{\mathrm{DDQ}}$	-0.5 to V_{DD}	V	1,4
Junction temperature	Tj	$+125(\max)$	${ }^{\circ} \mathrm{C}$	5
Storage temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

Notes:

1. All voltage is referenced to V_{SS}.
2. Permanent device damage may occur if Absolute Maximum Ratings are exceeded.

Functional operation should be restricted the Operation Conditions. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.
3. These CMOS memory circuits have been designed to meet the DC and AC specifications shown in the tables after thermal equilibrium has been established.
4. The following supply voltage application sequence is recommended: $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDQ}}, \mathrm{V}_{\mathrm{REF}}$ then $\mathrm{V}_{\mathbb{I N}}$. Remember, according to the Absolute Maximum Ratings table, $\mathrm{V}_{\mathrm{DDQ}}$ is not to exceed 2.5 V , whatever the instantaneous value of $\mathrm{V}_{\mathrm{DDQ}}$.
5. Some method of cooling or airflow should be considered in the system. (Especially for high frequency or ODT parts)

Recommended DC Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit	Notes
Power supply voltage -- core	V_{DD}	1.7	1.8	1.9	V	1
Power supply voltage -- I/O	$\mathrm{V}_{\mathrm{DDQ}}$	1.4	1.5	$\mathrm{~V}_{\mathrm{DD}}$	V	1,2
Input reference voltage -- I/O	$\mathrm{V}_{\mathrm{REF}}$	0.68	0.75	0.95	V	3
Input high voltage	$\mathrm{V}_{\mathrm{IH}(\mathrm{DC})}$	$\mathrm{V}_{\mathrm{REF}}+0.1$	-	$\mathrm{V}_{\mathrm{DDQ}}+0.3$	V	$1,4,5$
Input low voltage	$\mathrm{V}_{\mathrm{IL}(\mathrm{DC})}$	-0.3	-	$\mathrm{V}_{\mathrm{REF}}-0.1$	V	$1,4,5$

Notes:

1. At power-up, V_{DD} and $\mathrm{V}_{\mathrm{DDQ}}$ are assumed to be a linear ramp from 0 V to $\mathrm{V}_{\mathrm{DD}}(\mathrm{min}$.) or $\mathrm{V}_{\mathrm{DDQ}}$ (min.) within 200ms. During this time $\mathrm{V}_{\mathrm{DDQ}}<\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{IH}}<\mathrm{V}_{\mathrm{DDQ}}$.
During normal operation, $\mathrm{V}_{\mathrm{DDQ}}$ must not exceed V_{DD}.
2. Please pay attention to Tj not to exceed the temperature shown in the absolute maximum ratings table due to current from $V_{D D Q}$.
3. Peak to peak $A C$ component superimposed on $V_{\text {REF }}$ may not exceed 5% of $V_{\text {REF }}$.
4. These are $D C$ test criteria. The $A C V_{I H} / V_{I L}$ levels are defined separately to measure timing parameters.
5. Overshoot: $\mathrm{V}_{\mathrm{IH}(\mathrm{AC})} \leq \mathrm{V}_{\mathrm{DDQ}}+0.5 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{t}_{\text {KHKH }} / 2$

Undershoot: $V_{\text {IL (AC) }} \geq-0.5 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{t}_{\text {KHK }} / 2$
During normal operation, $\mathrm{V}_{\mathrm{IH}(\mathrm{DC})}$ must not exceed $\mathrm{V}_{\mathrm{DDQ}}$ and $\mathrm{V}_{\mathrm{IL}(\mathrm{DC})}$ must not be lower than V_{SS}.

DC Characteristics

($\mathrm{Ta}=0 \sim+70^{\circ} \mathrm{C} @ \mathrm{R} 1 \mathrm{Q}^{*} \mathrm{~A}^{* * * * * * B G-* * R * *}$ series, $\mathrm{Ta}=-40 \sim+85^{\circ} \mathrm{C} @ \mathrm{R} 1 \mathrm{Q}^{*} \mathrm{~A}^{* * * * *}$ BG-**I** series) $\left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0.75 \mathrm{~V}\right)$

Operating Supply Current (Write / Read)
Symbol $=I_{D D} . \quad$ Unit $=m A$. See Notes 1,2 and 3 in the page after next.

								QDR II+ / DDR II+						QDR II / DDR II			
							$\begin{gathered} \text { Frequency (max) } \\ (\mathrm{MHz}) \end{gathered}$	533	500	450	400	375	333	333	300	250	200
No							$\begin{aligned} & \hline \text { Cycle Time (min) } \\ & (\mathrm{ns}) \end{aligned}$	1.875	2.00	2.22	2.50	2.66	3.00	3.00	3.30	4.00	5.00
							Part Number \downarrow y $\mathrm{y} \rightarrow$	-19	-20	-22	-25	-27	-30	-30	-33	-40	-50
1	QDRII	B2	$\stackrel{\square}{\square}$	2	x		R1Q 2 A72 09ABv-yy									760	670
2					$\times 1$		R1Q 2 A72 18ABv-yy									890	780
3					$\times 3$		R1Q 2 A72 $36 \mathrm{ABv}-\mathrm{yy}$									950	830
5		B4			$\times 1$		R1Q 3 A72 18ABv-yy							880	820	730	
6		B4			$\times 3$		R1Q 3 A72 36ABv-yy							910	850	750	
8	DDRII	B2			$\times 1$		R1Q 4 A72 18ABv-yy							750	700	630	
9					$\times 3$		R1Q 4 A72 36ABv-yy							810	760	680	
11		B4			$\times 1$		R1Q 5 A72 18ABv-yy							660	630	590	
12					$\times 3$		R1Q 5 A72 36ABv-yy							700	670	630	
14	$\begin{gathered} \hline \text { DDRII } \\ \text { SIO } \end{gathered}$	B2			x1		R1Q 6 A72 18ABv-yy							750	700	630	
15					$\times 3$		R1Q 6 A72 36ABv-yy							810	760	680	
17	QDRII+	B4	$\stackrel{\sim}{\sim}$	2	x1		R1Q A A72 18ABv-yy	1220	1160	1070							
18					$\times 3$		R1Q A A72 36 ABv -yy	1280	1220	1130							
20	DDRII+	B2			$\times 1$		R1Q B A72 18ABv-yy	1030	990	920							
21					$\times 3$		R1Q B A72 36ABv-yy	1110	1060	990							
23		B4			$\times 1$		R1Q C A72 18ABv-yy	820	790	750							
24					$\times 3$		R1Q C A72 36ABv-yy	880	850	800							
26	QDRII+	B4	$\stackrel{\sim}{\sim}$		x1		R1Q D A72 18ABv-yy	1220	1160	1070							
27					$\times 3$		R1Q D A72 36ABv-yy	1280	1220	1130							
29	DDRII+	B2			x1		R1Q EA72 18ABv-yy	1030	990	920							
30					x3		R1Q EA72 36 ABv -yy	1110	1060	990							
32		B4			x1		R1Q F A72 18 ABv - yy	820	790	750							
33					x3		R1Q F A72 36 A Bv-yy	880	850	800							
35	QDRII+	B4	우	안	$\times 1$		R1Q G A72 18ABv-yy				980						
36					$\times 3$		R1Q G A72 36ABv-yy				1060						
38	DDRII+	B2			x1		R1Q H A72 18ABv-yy				850						
39					x3		R1Q H A72 36 ABv -yy				910						
41		B4			$\times 1$		R1Q J A72 18 A Bv-yy				710						
42					$\times 3$		R1Q J A72 36ABv-yy				760						
44	QDRII+	B4	$\stackrel{\text { 안 }}{ }$	$\stackrel{』}{8}$	$\times 1$		R1Q K A72 18ABv-yy				980						
45					x3		R1Q K A72 36 ABv -yy				1060						
47	DDRII+	B2			x1		R1Q L A72 18ABv-yy				850						
48					$\times 3$		R1Q L A72 36ABv-yy				910						
50		B4			$\times 1$		R1QM A72 18ABv-yy				710						
51					$\times 3$		R1QM A72 36 ABv - yy				760						

Notes:

1. "v" represents the package size. If " v " $=$ " G " then size is $15 \times 17 \mathrm{~mm}$, and if " v " $=" B$ " then $13 \times 15 \mathrm{~mm}$.
2. "yy" represents the speed bin. "R1QAA7236ABG-20" can operate at $500 \mathrm{MHz}(\max)$ of frequency, for example.

Standby Supply Current (NOP)
Symbol $=I_{\text {SB1 }} . \quad$ Unit $=m A . \quad$ See Notes 2, 4 and 5 in the next page.

							QDR II+ / DDR II+						QDR II / DDR II			
No				$\stackrel{-}{\mathbf{\circ}}$		$\begin{gathered} \hline \text { Frequency (max) } \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	533	500	450	400	375	333	333	300	250	200
						Cycle Time (min) (ns)	1.875	2.00	2.22	2.50	2.66	3.00	3.00	3.30	4.00	5.00
						Part Number \downarrow y $\mathrm{y} \rightarrow$	-19	-20	-22	-25	-27	-30	-30	-33	-40	-50
1	QDRII	B2		응	x 9	R1Q 2 A72 09 A Bv-yy									570	510
2					x18	R1Q 2 A72 18 A Bv-yy									670	600
3					x36	R1Q 2 A72 36 A Bv-yy									710	630
5		B4			x18	R1Q 3 A72 18 A Bv-yy							630	590	520	
6					x 36	R1Q 3 A72 36 A Bv-yy							650	610	540	
8	DDRII	B2			$\times 18$	R1Q 4 A72 18 A Bv- yy							650	610	560	
9					x 36	R1Q 4 A72 36 A Bv- yy							710	670	610	
11		B4			x18	R1Q 5 A72 18 A Bv-yy							540	510	480	
12					x 36	R1Q 5 A72 36 A Bv-yy							570	540	500	
14	$\begin{gathered} \hline \text { DDRII } \\ \text { SIO } \end{gathered}$	B2			$\times 18$	R1Q 6 A72 18 A Bv-yy							650	610	560	
15					x 36	R1Q 6 A72 36 ABv-yy							710	670	610	
17	QDRII+	B4	$\stackrel{\sim}{\mathbf{N}}$	ㅇ	x18	R1Q A A72 18 A Bv- yy	870	830	780							
18					x 36	R1Q A A72 36 A Bv-yy	910	870	810							
20	DDRII+	B2			x18	R1Q B A72 18 A Bv- yy	870	840	780							
21					x 36	R1Q B A72 36 A Bv- yy	960	920	860							
23		B4			$\times 18$	R1Q C A72 18 A Bv-yy	690	660	630							
24					x 36	R1Q C A72 36 A Bv-yy	730	710	670							
26	QDRII+	B4	$\stackrel{\sim}{N}$	$\stackrel{\Perp}{\underset{\sim}{x}}$	$\times 18$	R1Q D A72 18 A Bv-yy	870	830	780							
27					x 36	R1Q D A72 36 A Bv-yy	910	870	810							
29	DDRII+	B2			$\times 18$	R1Q E A72 18 A Bv-yy	870	840	780							
30					x 36	R1Q E A72 36 A Bv- yy	960	920	860							
32		B4			$\times 18$	R1Q F A72 18 A Bv-yy	690	660	630							
33		B4			x 36	R1Q F A72 36 A Bv-yy	730	710	670							
35	QDRII+	B4	우	ㅇ	x18	R1Q G A72 18 A Bv- yy				720						
36	QDRI+	B4			x 36	R1Q G A72 36 A Bv- yy				770						
38	DDRII+	B2			$\times 18$	R1Q H A72 18 A Bv-yy				720						
39					x36	R1Q H A72 36 A Bv-yy				790						
41		B4			x18	R1Q J A72 18 A Bv- yy				590						
42		B4			x 36	R1Q J A72 36 A Bv-yy				630						
44	QDRII+	B4	$\stackrel{\text { 앗 }}{ }$	$\stackrel{\mathscr{y}}{\boldsymbol{\Delta}}$	$\times 18$	R1Q K A72 18 A Bv- yy				720						
45	QDRI+	B4			x 36	R1Q K A72 36 A Bv-yy				770						
47	DDRII+	B2			x18	R1Q L A72 18 A Bv- yy				720						
48					x36	R1Q L A72 36 A Bv-yy				790						
50		B4			$\times 18$	R1Q M A72 18 A Bv-yy				590						
51					x 36	R1Q M A72 36 A Bv-yy				630						

Notes:

1. " v " represents the package size. If " v " $=$ " G " then size is $15 \times 17 \mathrm{~mm}$, and if " v " $=$ " B " then $13 \times 15 \mathrm{~mm}$.
2. "yy" represents the speed bin. "R1QAA7236ABG-20" can operate at $500 \mathrm{MHz}(\mathrm{max})$ of frequency, for example.

Leakage Currents \& Output Voltage

Parameter	Symbol	Min	Max	Unit	Test condition	Notes
Input leakage current	I_{LI}	-2	2	$\mu \mathrm{~A}$		10
Output leakage current	I_{LO}	-5	5	$\mu \mathrm{~A}$		11
Output high voltage	V_{OH} (LoW)	$\mathrm{V}_{\mathrm{DDQ}}-0.2$	$\mathrm{~V}_{\mathrm{DDQ}}$	V	$\mathrm{I}_{\mathrm{OH}} \mathrm{I} \leq 0.1 \mathrm{~mA}$	8,9
	$\mathrm{~V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{DDQ}} / 2$ -0.12	$\mathrm{V}_{\mathrm{DDQ}} / 2$ +0.12	V	Note 6	8,9
	V_{OL} (Low)	V_{SS}	0.2	V	$\mathrm{I}_{\mathrm{OL}} \leq 0.1 \mathrm{~mA}$	8,9
	$\mathrm{~V}_{\mathrm{OL}}$	$\mathrm{V}_{\mathrm{DDQ}} / 2$ -0.12	$\mathrm{V}_{\mathrm{DDQ}} / 2$ +0.12	V	Note 7	8,9

Notes:

1. All inputs (except $Z Q, V_{R E F}$) are held at either $V_{I H}$ or $V_{I L}$.
2. $\mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} . \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} \mathrm{max}, \mathrm{t}_{\mathrm{KHKH}}=\mathrm{t}_{\text {KHKH }} \mathrm{min}$.
3. Operating supply currents $\left(I_{D D}\right)$ are measured at 100% bus utilization. $I_{D D}$ of QDR family is current of device with 100% write and 100% read cycle. $I_{D D}$ of DDR family is current of device with 100% write cycle (if $I_{D D}($ Write $)>I_{D D}\left(\right.$ Read)) or 100% read cycle (if $I_{D D}(W r i t e)<I_{D D}($ Read)).
4. All address / data inputs are static at either $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {IL }}$.
5. Reference value. (Condition = NOP currents are valid when entering NOP after all pending READ and WRITE cycles are completed.)
6. Outputs are impedance-controlled. $\left|\|_{\mathrm{OH}}\right|=\left(\mathrm{V}_{\mathrm{DDQ}} / 2\right) /(\mathrm{RQ} / 5)$ for values of $175 \Omega \leq \mathrm{RQ} \leq 350 \Omega$.
7. Outputs are impedance-controlled. $\mathrm{I}_{\mathrm{OL}}=\left(\mathrm{V}_{\mathrm{DDQ}} / 2\right) /(\mathrm{RQ} / 5)$ for values of $175 \Omega \leq R Q \leq 350 \Omega$.
8. AC load current is higher than the shown $D C$ values. $A C I / O$ curves are available upon request.
9. HSTL outputs meet JEDEC HSTL Class I and Class II standards.
10. $0 \leq \mathrm{V}_{\mathbb{I N}} \leq \mathrm{V}_{\mathrm{DDQ}}$ for all input balls (except $\mathrm{V}_{\mathrm{REF}}$, ZQ , TCK, TMS, TDI ball).

If R1QD, R1QE, R1QF, R1QK, R1QL, R1QM, R1QP series, balls with ODT do not follow this spec.
11. $0 \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {DDQ }}$ (except TDO ball), output disabled.

Thermal Resistance

Parameter	Symbol	Airflow	Typ	Unit	Test condition	Notes
Junction to Ambient	θ_{JA}	$1 \mathrm{~m} / \mathrm{s}$	11.0	$^{\circ} / \mathrm{C}$	EIA/JEDEC JESD51	1
Junction to Case	θ_{JC}	-	4.4			

Notes:

1. These parameters are calculated under the condition. These are reference values.
2. $\mathrm{Tj}=\mathrm{Ta}+\theta_{\mathrm{JA}} \times \mathrm{Pd}$
$\mathrm{Tj}=\mathrm{Tc}+\theta_{\mathrm{JC}} \times \mathrm{Pd}$
where
Tj : junction temperature when the device has achieved a steady-state after application of $\mathrm{Pd}\left({ }^{\circ} \mathrm{C}\right)$
Ta : ambient temperature (${ }^{\circ} \mathrm{C}$)
Tc : temperature of external surface of the package or case (${ }^{\circ} \mathrm{C}$)
θ_{JA} : thermal resistance from junction-to-ambient (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
θ_{Jc} : thermal resistance from junction-to-case (package) (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
Pd : power dissipation that produced change in junction temperature (W) (cf.JESD51-2A)

Capacitance

$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}\right.$, Frequency $\left.=1.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO}}=1.5 \mathrm{~V}\right)$

Parameter	Symbol	Min	Typ	Max	Unit	Test condition	Notes
Input capacitance $(\mathrm{SA}, / \mathrm{R}, / \mathrm{W}, / \mathrm{BW}, \mathrm{D}$ (separate) $)$	C_{IN}	-	4	5	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	1,2
Clock input capacitance (K,/K, C,/C)	$\mathrm{C}_{\mathrm{CLK}}$	-	4	5	pF	$\mathrm{V}_{\mathrm{CLK}}=0 \mathrm{~V}$	1,2
Output capacitance $(\mathrm{Q}$ (separate), DQ (common), $\mathrm{CQ}, / \mathrm{CQ})$	$\mathrm{C}_{\mathrm{IIO}}$	-	5	6	pF	$\mathrm{V}_{\text {IO }}=0 \mathrm{~V}$	1,2

Notes:

1. These parameters are sampled and not 100% tested.
2. Except JTAG (TCK, TMS, TDI, TDO) pins.

AC Test Conditions

Input waveform (Rise/fall time $\leq 0.3 \mathrm{~ns}$)

Output waveform

Output load conditions

AC Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit	Notes
Input high voltage	$\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$	$\mathrm{V}_{\mathrm{REF}}+0.2$	-	-	V	$1,2,3,4$
Input low voltage	$\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$	-	-	$\mathrm{V}_{\mathrm{REF}}-0.2$	V	$1,2,3,4$

Notes:

1. All voltages referenced to $V_{S S}$ (GND).

During normal operation, $\mathrm{V}_{\mathrm{DDQ}}$ must not exceed V_{DD}.
2. These conditions are for AC functions only, not for AC parameter test.
3. Overshoot: $\mathrm{V}_{\mathrm{IH}(\mathrm{AC})} \leq \mathrm{V}_{\mathrm{DDQ}}+0.5 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{t}_{\mathrm{KH} \text { КН }} / 2$

Undershoot: $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})} \geq-0.5 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{t}_{\text {КНКН }} / 2$
Control input signals may not have pulse widths less than $\mathrm{t}_{\text {KHKL }}(\mathrm{min})$ or operate at cycle rates less than $\mathrm{t}_{\text {KHKH }}(\mathrm{min})$.
4. To maintain a valid level, the transitioning edge of the input must:
a. Sustain a constant slew rate from the current $A C$ level through the target AC level,

$$
\mathrm{V}_{\mathrm{IL}(\mathrm{AC})} \text { or } \mathrm{V}_{\mathrm{IH}(\mathrm{AC})}
$$

b. Reach at least the target $A C$ level.
c. After the $A C$ target level is reached, continue to maintain at least the target DC level, $\mathrm{V}_{\mathrm{IL}(\mathrm{DC})}$ or $\mathrm{V}_{\mathrm{IH}(\mathrm{DC})}$.

AC Characteristics (QDR-II, DDR-II series)

($\mathrm{Ta}=0 \sim+70^{\circ} \mathrm{C} @ \mathrm{R} 1 Q^{*} \mathrm{~A}^{* * * * * B G-* *} \mathrm{R}^{* *}$ series)
($\mathrm{Ta}=-40 \sim+85^{\circ} \mathrm{C} @$ R1Q*A*****BG-**I** series)
$\left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0.75 \mathrm{~V}\right)$

Parameter	Symbol	-30		-33		-40		-50		-		-		Unit	Notes
		Min	Max												
Clock															
Average clock cycle time (K, /K, C, /C)	$\mathrm{t}_{\text {KHKH }}$	3.00	8.40	3.30	8.40	4.00	8.40	5.00	8.40	-	-	-	-	ns	8
Clock high time (K, /K, C, /C)	$\mathrm{t}_{\text {KHKL }}$	1.20	-	1.32	-	1.60	-	2.00	-	-	-	-	-	ns	
Clock low time (K, /K, C, /C)	$\mathrm{t}_{\text {KLKH }}$	1.20	-	1.32	-	1.60	-	2.00	-	-	-	-	-	ns	
Clock to /clock (K to /K, C to /C)	$\mathrm{t}_{\text {KH/KH }}$	1.35	-	1.49	-	1.80	-	2.20	-	-	-	-	-	ns	
/Clock to clock (IK to K, /C to C)	$\mathrm{t}_{\text {/КНКН }}$	1.35	-	1.49	-	1.80	-	2.20	-	-	-	-	-	ns	
Clock to data clock (K to C , /K to /C)	$\mathrm{t}_{\mathrm{KHCH}}$	0	1.35	0	1.49	0	1.80	0	2.20	-	-	-	-	ns	
DLL/PLL Timing															
$\begin{gathered} \text { Clock phase } \\ \text { jitter } \\ (\mathrm{K}, / \mathrm{K}, \mathrm{C}, / \mathrm{C}) \\ \hline \end{gathered}$	$\mathrm{t}_{\mathrm{KC}} \mathrm{var}$	-	0.20	-	0.20	-	0.20	-	0.20	-	-	-	-	ns	3
Lock time (K, C)	t_{Kc} lock	1024	-	1024	-	1024	-	1024	-	-	-	-	-	Cycle	2
K static to DLL/PLL reset	t_{Kc} reset	30	-	30	-	30	-	30	-	-	-	-	-	ns	7
Output Times															
C, /C high to output valid	$\mathrm{t}_{\mathrm{CHQV}}$	-	0.45	-	0.45	-	0.45	-	0.45	-	-	-	-	ns	9
C, /C high to output hold	$\mathrm{t}_{\text {CHQX }}$	-0.45	-	-0.45	-	-0.45	-	-0.45	-	-	-	-	-	ns	9
C, /C high to echo clock valid	$\mathrm{t}_{\text {CHCQV }}$	-	0.45	-	0.45	-	0.45	-	0.45	-	-	-	-	ns	9
C, /C high to echo clock hold	$\mathrm{t}_{\text {CHCQX }}$	-0.45	-	-0.45	-	-0.45	-	-0.45	-	-	-	-	-	ns	9
$\begin{aligned} & \text { CQ, /CQ high } \\ & \text { to } \\ & \text { output valid } \end{aligned}$	$\mathrm{t}_{\text {CQHQV }}$	-	0.25	-	0.27	-	0.30	-	0.35	-	-	-	-	ns	4, 7
\qquad	$\mathrm{t}_{\text {CQHQX }}$	-0.25	-	-0.27	-	-0.30	-	-0.35	-	-	-	-	-	ns	4, 7
C, /C high to output high-Z	$\mathrm{t}_{\text {CHQZ }}$	-	0.45	-	0.45	-	0.45	-	0.45	-	-	-	-	ns	5, 6, 9
C, /C high to output low-Z	$\mathrm{t}_{\text {CHOX1 }}$	-0.45	-	-0.45	-	-0.45	-	-0.45	-	-	-	-	-	ns	5, 9
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Parameter	Symbol	-30		-33		-40		-50		-		-		Unit	Notes
		Min	Max												
Setup Times															
Address valid to K rising edge	$\begin{gathered} \mathrm{t}_{\text {AVKH }} \\ \text { for R1Q2 } \end{gathered}$	-	-	-	-	0.35	-	0.40	-	-	-	-	-	ns	1
	$\begin{gathered} \mathrm{t}_{\text {AVKH }} \\ \text { for } \mathrm{R} 1 \mathrm{Q} 3 / 4 / 5 / 6 \end{gathered}$	0.40	-	0.40	-	0.50	-	0.60	-	-	-	-	-		
Control inputs valid to K rising edge	$\begin{gathered} \mathrm{t}_{\mathrm{VVKH}} \\ \text { for R1Q2 } \end{gathered}$	-	-	-	-	0.35	-	0.40	-	-	-	-	-	ns	1
	$\begin{gathered} \mathrm{t}_{\text {VVKH }} \\ \text { for } \mathrm{R} 1 \mathrm{Q} 3 / 4 / 5 / 6 \end{gathered}$	0.40	-	0.40	-	0.50	-	0.60	-	-	-	-	-		
Data-in valid to K, /K rising edge	$\mathrm{t}_{\text {DVKH }}$	0.28	-	0.30	-	0.35	-	0.40	-	-	-	-	-	ns	1
Hold Times															
K rising edge to address hold	$t_{\text {KHAX }}$ for R1Q2	-	-	-	-	0.35	-	0.40	-	-	-	-	-	ns	1
	$\begin{gathered} \mathrm{t}_{\text {KHAX }} \\ \text { for } \mathrm{R} 1 \text { Q3/4/5/6 } \end{gathered}$	0.40	-	0.40	-	0.50	-	0.60	-	-	-	-	-		
K rising edge to control inputs hold	$\begin{gathered} t_{\text {KHIX }} \\ \text { for R1Q2 } \end{gathered}$	-	-	-	-	0.35	-	0.40	-	-	-	-	-	ns	1
	$\begin{gathered} \mathrm{t}_{\text {KHIX }} \\ \text { for R1Q3/4/5/6 } \end{gathered}$	0.40	-	0.40	-	0.50	-	0.60	-	-	-	-	-		
K, /K rising edge to data-in hold	$\mathrm{t}_{\text {KHDX }}$	0.28	-	0.30	-	0.35	-	0.40	-	-	-	-	-	ns	1

Notes:

1. This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold times for all latching clock edges.
2. $V_{D D}$ and $V_{D D Q}$ slew rate must be less than 0.1 V DC per 50 ns for DLL/PLL lock retention. DLL/PLL lock time begins once $V_{D D}, V_{D D Q}$ and input clock are stable.
It is recommended that the device is kept inactive during these cycles.
This specification meets the QDR common spec. of 20 us.
3. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
4. Echo clock is very tightly controlled to data valid / data hold. By design, there is a ± 0.1 ns variation from echo clock to data. The datasheet parameters reflect tester guardbands and test setup variations.
5. Transitions are measured $\pm 100 \mathrm{mV}$ from steady-state voltage.
6. At any given voltage and temperature $\mathrm{t}_{\mathrm{CHQZ}}$ is less than $\mathrm{t}_{\mathrm{CHOX} 1}$ and $\mathrm{t}_{\mathrm{CHQV}}$.
7. These parameters are sampled.
8. When x 18 and x 36 configuration except QDRII-B2 are operated at less than 180 MHz , DLL/PLL should be disabled (/DOFF=L). Please contact Renesas if these devices are always used at less than 180 MHz with DLL/PLL operation.
9. $\mathrm{t}_{\mathrm{CHQV}}, \mathrm{t}_{\mathrm{CHQX}}, \mathrm{t}_{\mathrm{CHCQV}}, \mathrm{t}_{\mathrm{CHCQX}}, \mathrm{t}_{\mathrm{CHQZ}}, \mathrm{t}_{\mathrm{CHQX} 1}$ spec of R1Q3A and R1Q4A series is determined by the actual frequency regardless of Part Number (Marking Name). The following is the spec for the actual frequency.

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{CHQV}}, \mathrm{t}_{\mathrm{CHCQV}}, \mathrm{t}_{\mathrm{CHQZ}}=0.45 \mathrm{~ns} \text { for } \geq 200 \mathrm{MHz} \text { and } 0.50 \mathrm{~ns} \text { for }<200 \mathrm{MHz} \\
& \mathrm{t}_{\mathrm{CHQX}}, \mathrm{t}_{\mathrm{CHCQX}}, \mathrm{t}_{\mathrm{CHQX} 1}=-0.45 \mathrm{~ns} \text { for } \geq 200 \mathrm{MHz} \text { and }-0.50 \mathrm{~ns} \text { for }<200 \mathrm{MHz}
\end{aligned}
$$

Remarks:

1. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise noted.
2. Control input signals may not be operated with pulse widths less than $\mathrm{t}_{\mathrm{KHKL}}$ (min).
3. If $\mathrm{C}, / \mathrm{C}$ are tied high, $\mathrm{K}, / \mathrm{K}$ become the references for $\mathrm{C}, / \mathrm{C}$ timing parameters.
4. $V_{D D Q}$ is $+1.5 \mathrm{~V} D C$. $V_{R E F}$ is +0.75 VDC .
5. Control signals are /R,/W (QDR series), /LD, R-/W (DDR series), /BW, /BW0, /BW1,/BW2 and /BW3. Setup and hold times of /BWx signals must be the same as those of Data-in signals.

Timing Waveforms

Read and Write Timing (QDRII, B2, Read Latency $=1.5$ cycle)

Notes:

1. Q00 refers to output from address $A 0+0$. Q01 refers to output from the next internal burst address following A0, i.e., $\mathrm{A} 0+1$.
2. Outputs are disabled (high-Z) N clock cycle after the last read cycle. Here, $\mathrm{N}=$ Read Latency + Burst Length $\times 0.5$.
3. In this example, if address $\mathrm{A} 0=\mathrm{A} 1$, then data $\mathrm{Q} 00=\mathrm{D} 10, \mathrm{Q} 01=\mathrm{D} 11$. Write data is forwarded immediately as read results.
4. To control read and write operations, /BW signals must operate at the same timing as Data-in signals.

JTAG Specification

These products support a limited set of JTAG functions as in IEEE standard 1149.1.

Disabling the Test Access Port

It is possible to use this device without utilizing the TAP. To disable the TAP controller without interfering with normal operation of the device, TCK must be tied to V_{SS} to preclude mid level inputs.
TDI and TMS are internally pulled up and may be unconnected, or may be connected to VDD through a pull up resistor.
TDO should be left unconnected.

Test Access Port (TAP) Pins

Symbol I/O	Pin assignments	Description	Notes
TCK	$2 R$	Test clock input. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.	
TMS	$10 R$	Test mode select. This is the command input for the TAP controller state machine.	
TDI	$11 R$	Test data input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction.	
TDO	$1 R$	Test data output. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.	

Notes:

The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high for five rising edges of TCK. The TAP controller state is also reset on SRAM POWER-UP.

TAP DC Operating Characteristics

$$
\begin{aligned}
& \left(\mathrm{Ta}=0 \sim+70^{\circ} \mathrm{C} @ \mathrm{R} 1 \mathrm{Q}^{*} \mathrm{~A}^{\left.* * * * * * \mathrm{BG}-* * \mathrm{R}^{* *} \text { series }\right)}\right. \\
& \left(\mathrm{Ta}=-40 \sim+85^{\circ} \mathrm{C} @ \mathrm{R} 1 \mathrm{Q}^{*} \mathrm{~A}^{\left.* * * * * B G-* * \mathrm{I}^{* *} \text { series }\right)}\right. \\
& \left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}\right)
\end{aligned}
$$

Parameter	Symbol	Min	Typ	Max	Unit	Notes
Input high voltage	V_{IH}	+1.3	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Input low voltage	V_{IL}	-0.3	-	+0.5	V	
Input leakage current	I_{LI}	-5.0	-	+5.0	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$
Output leakage current	I_{LO}	-5.0	-	+5.0	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$ output disabled
	$\mathrm{V}_{\mathrm{OL} 1}$	-	-	0.2	V	$\mathrm{I}_{\mathrm{OLC}}=100 \mu \mathrm{~A}$
	$\mathrm{~V}_{\mathrm{OL} 2}$	-	-	0.4	V	$\mathrm{I}_{\mathrm{OLT}}=2 \mathrm{~mA}$
Output high voltage	$\mathrm{V}_{\mathrm{OH} 1}$	1.6	-	-	V	$\mathrm{I}_{\mathrm{OHC}} \mid=100 \mu \mathrm{~A}$
	$\mathrm{~V}_{\mathrm{OH} 2}$	1.4	-	-	V	$\left\|\mathrm{I}_{\mathrm{OHT}}\right\|=2 \mathrm{~mA}$

Notes:

1. All voltages referenced to V_{SS} (GND).
2. At power-up, V_{DD} and $\mathrm{V}_{\mathrm{DDQ}}$ are assumed to be a linear ramp from OV to $\mathrm{V}_{\mathrm{DD}}(\mathrm{min}$.) or $\mathrm{V}_{\mathrm{DDQ}}\left(\mathrm{min}\right.$.) within 200 ms . During this time $\mathrm{V}_{\mathrm{DDQ}}<\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{IH}}<\mathrm{V}_{\mathrm{DDQ}}$.
During normal operation, $\mathrm{V}_{\mathrm{DDQ}}$ must not exceed V_{DD}.

TAP AC Test Conditions

Parameter	Symbol	Conditions	Unit	Notes
Input timing measurement reference levels	$\mathrm{V}_{\text {REF }}$	0.9	V	
Input pulse levels	$\mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {IH }}$	0 to 1.8	V	
Input rise/fall time	tr, tf	≤ 1.0	ns	
Output timing measurement reference levels		0.9	V	
Test load termination supply voltage $\left(\mathrm{V}_{\text {TT }}\right)$		0.9	V	
Output load		See figures		

Input waveform

Output waveform

Output load condition

TAPAC Operating Characteristics

```
( \(\mathrm{Ta}=0 \sim+70^{\circ} \mathrm{C} @ \mathrm{R} 1 \mathrm{Q}^{*} \mathrm{~A}^{* * * * * B G-* *} \mathrm{R}^{* *}\) series)
( \(\mathrm{Ta}=-40 \sim+85^{\circ} \mathrm{C} @ \mathrm{R} 1 \mathrm{Q}^{*} \mathrm{~A}^{* * * * * B G-* * I * *}\) series)
( \(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}\) )
```

Parameter	Symbol	Min	Typ	Max	Unit	Notes
Test clock (TCK) cycle time	$\mathrm{t}_{\mathrm{THTH}}$	50	-	-	ns	
TCK high pulse width	$\mathrm{t}_{\mathrm{THTL}}$	20	-	-	ns	
TCK low pulse width	$\mathrm{t}_{\mathrm{TLTH}}$	20	-	-	ns	
Test mode select (TMS) setup	$\mathrm{t}_{\mathrm{MVTH}}$	5	-	-	ns	
TMS hold	$\mathrm{t}_{\mathrm{THMX}}$	5	-	-	ns	
Capture setup	t_{CS}	5	-	-	ns	1
Capture hold	t_{CH}	5	-	-	ns	1
TDI valid to TCK high	$\mathrm{t}_{\mathrm{DVTH}}$	5	-	-	ns	
TCK high to TDI invalid	$\mathrm{t}_{\mathrm{THDX}}$	5	-	-	ns	
TCK low to TDO unknown	$\mathrm{t}_{\mathrm{TLQX}}$	0	-	-	ns	
TCK low to TDO valid	$\mathrm{t}_{\mathrm{TLQV}}$	-	-	10	ns	

Notes:

1. $\mathrm{t}_{\mathrm{CS}}+\mathrm{t}_{\mathrm{CH}}$ defines the minimum pause in RAM I/O pad transitions to assure pad data capture.

TAP Controller Timing Diagram

Test Access Port Registers

Register name	Length	Symbol	Notes
Instruction register	3 bits	IR [2:0]	
Bypass register	1 bit	BP	
ID register	32 bits	ID [31:0]	
Boundary scan register	109 bits	BS [109:1]	

TAP Controller Instruction Set

IR2	IR1	IRO	Instruction	Description	Notes
0	0	0	EXTEST	The EXTEST instruction allows circuitry external to the component package to be tested. Boundary scan register cells at output balls are used to apply test vectors, while those at input balls capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the Update-IR state of EXTEST, the output driver is turned on and the PRELOAD data is driven onto the output balls	1, 2, 3, 5
0	0	1	IDCODE	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO balls in shiftDR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the Test-Logic-Reset state.	
0	1	0	SAMPLE-Z	If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z), moving the TAP controller into the capture-DR state loads the data in the RAMs input into the boundary scan register, and the boundary scan register is connected between TDI and TDO when the TAP controller is moved to the shift-DR state.	3, 4, 5
0	1	1	RESERVED	The RESERVED instructions are not implemented but are reserved for future use. Do not use these instructions.	
1	0	0	SAMPLE (IPRELOAD)	When the SAMPLE instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and I/O buffers into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to SAMPLE metastable input will not harm the device, repeatable results cannot be expected. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO balls.	3, 5
1	0	1	RESERVED	-	
1	1	0	RESERVED	-	
1	1	1	BYPASS	The BYPASS instruction is loaded in the instruction register when the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.	

Notes:

1. Data in output register is not guaranteed if EXTEST instruction is loaded.
2. After performing EXTEST, power-up conditions are required in order to return part to normal operation.
3. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (t_{CS} plus t_{CH}). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register.
4. Clock recovery initialization cycles are required after boundary scan.
5. For R1QD, R1QE, R1QF, R1QK, R1QL, R1QM, R1QP series, ODT is disabled in EXTEST, SAMPLE-Z or SAMPLE mode.

Boundary Scan Order

Bit \#	Ball ID	Signal names		
		x9	x18	x36
1	6R	/C	/C	/C
2	6 P	C	C	C
3	6N	SA	SA	SA
4	7P	SA	SA	SA
5	7N	SA	SA	SA
6	7R	SA	SA	SA
7	8R	SA	SA	SA
8	8P	SA	SA	SA
9	9R	SA	SA	SA
10	11P	Q0	Q0	Q0
11	10P	D0	D0	D0
12	10N	NC	NC	D9
13	9P	NC	NC	Q9
14	10M	NC	Q1	Q1
15	11N	NC	D1	D1
16	9M	NC	NC	D10
17	9N	NC	NC	Q10
18	11L	Q1	Q2	Q2
19	11M	D1	D2	D2
20	9L	NC	NC	D11
21	10L	NC	NC	Q11
22	11K	NC	Q3	Q3
23	10K	NC	D3	D3
24	9J	NC	NC	D12
25	9K	NC	NC	Q12
26	10J	Q2	Q4	Q4
27	11J	D2	D4	D4
28	11H	ZQ	ZQ	ZQ
29	10G	NC	NC	D13
30	9G	NC	NC	Q13
31	11F	NC	Q5	Q5
32	11G	NC	D5	D5
33	9F	NC	NC	D14
34	10F	NC	NC	Q14
35	11E	Q3	Q6	Q6

Bit \#	Ball ID	Signal names		
		x9	x18	x36
36	10E	D3	D6	D6
37	10D	NC	NC	D15
38	9E	NC	NC	Q15
39	10C	NC	Q7	Q7
40	11D	NC	D7	D7
41	9C	NC	NC	D16
42	9D	NC	NC	Q16
43	11B	Q4	Q8	Q8
44	11C	D4	D8	D8
45	9B	NC	NC	D17
46	10B	NC	NC	Q17
47	11A	CQ	CQ	CQ
48	10A	SA	SA	NC
49	9A	SA	SA	SA
50	8B	SA	SA	SA
51	7C	SA	SA	SA
52	6C	SA	SA	SA
53	8A	/R	/R	/R
54	7A	NC	NC	/BW1
55	7B	/BW	/BW0	/BW0
56	6B	K	K	K
57	6A	/K	/K	/K
58	5B	NC	NC	/BW3
59	5A	NC	/BW1	/BW2
60	4A	/W	/W	/W
61	5C	SA	SA	SA
62	4B	SA	SA	SA
63	3A	SA	SA	SA
64	2A	SA	NC	NC
65	1A	/CQ	/CQ	/CQ
66	2B	NC	Q9	Q18
67	3B	NC	D9	D18
68	1 C	NC	NC	D27
69	1B	NC	NC	Q27
70	3D	NC	Q10	Q19

Boundary Scan Order

Bit \#	Ball ID	Signal names		
		x9	x18	x36
71	3C	NC	D10	D19
72	1D	NC	NC	D28
73	2C	NC	NC	Q28
74	3E	Q5	Q11	Q20
75	2D	D5	D11	D20
76	2E	NC	NC	D29
77	1E	NC	NC	Q29
78	2F	NC	Q12	Q21
79	3F	NC	D12	D21
80	1G	NC	NC	D30
81	1F	NC	NC	Q30
82	3G	Q6	Q13	Q22
83	2G	D6	D13	D22
84	1H	/DOFF	/DOFF	/DOFF
85	1 J	NC	NC	D31
86	2J	NC	NC	Q31
87	3K	NC	Q14	Q23
88	3J	NC	D14	D23
89	2K	NC	NC	D32
90	1K	NC	NC	Q32

Bit \#	Ball ID	Signal names		
		$x 9$	$x 18$	$x 36$
91	2 L	Q7	Q15	Q24
92	3 L	D 7	D 15	D 24
93	1 M	NC	NC	D33
94	1 L	NC	NC	Q33
95	3 N	NC	Q16	Q25
96	$3 M$	NC	D16	D25
97	1 N	NC	NC	D34
98	$2 M$	NC	NC	Q34
99	$3 P$	Q8	Q17	Q26
100	2 N	D8	D17	D26
101	$2 P$	NC	NC	D35
102	$1 P$	NC	NC	Q35
103	$3 R$	SA	SA	SA
104	$4 R$	SA	SA	SA
105	$4 P$	SA	SA	SA
106	$5 P$	SA	SA	SA
107	$5 N$	SA	SA	SA
108	$5 R$	SA	SA	SA
109	-	INTER-	INTER-	INTER-
-	-	-	-	-

Notes:
In boundary scan mode,

1. Clock balls (K, /K, C, /C) are referenced to each other and must be at opposite logic levels for reliable operation.
2. $C Q$ and $/ C Q$ data are synchronized to the respective C and $/ C$ (except EXTEST, SAMPLE-Z).
3. If C and $/ C$ tied high, $C Q$ is generated with respect to K and $/ C Q$ is generated with respect to $/ K$ (except EXTEST, SAMPLE-Z).

ID Register

TAP Controller State Diagram

Package Dimensions and Marking Information

Both Pb parts and Pb -free parts are available.

JEITA Package Code	Renesas Code	Previous Code	Mass (typ.)
P-LBGA165-15x17-1.00	PLBG0165FD-A	165 FHE	0.6 g

Bottom View

| Reference |
| :---: | :---: | :---: | :---: |
| Symbol |$\underline{3}$ Dimension in mm

Appendix

Example of DC/AC characteristics data

Parts Number : R1Q2A7236RBG-40R

tCHQV (C, /C high to output valid) Shmoo (Ta=70 degC)								
		$\begin{aligned} & \text { TIME } \\ & \text { OPS } \end{aligned}$	100PS	200PS	300PS	400PS	500PS	
Voltage								
	2. 00 V				PPPPP	PPPPP		
	1. 95 V				PPPPP	PPPPP		P : Pass
	1. 90 V			PP	PPPPPP	PPPPP		: SPEC
					PPPPP	PPPPP		
					PPPPP	PPPPP		
					PPPPP	PPPPP		
					PPPPP	PPPPP		
				P	PPPPP	PPPPP		
					PPPPP	PPPPP		
		OPS	100PS	200PS	300PS	400PS	500Ps	
tCHQV								

Revision History (1)

Rev.	Date	\#	Comment	
Rev. 0.00a	08.10.08	1	Initial issue.	
Rev. 0. 00b	08.10.09	1	Corrected typos in "DC Characteristics": VOH/VOL= VDDQ/2 $\pm 1.12 \rightarrow \pm 0.12$.	
Rev. O. O0c	'08.11.19	1		
Rev. 0.00d	'08.11.28	1	Corrected typos in "General Description": ODT pin = Q0~Qn \rightarrow DO~Dn.	
		2	Updated "Recommended DC Operating Conditions": Vref $=0.68 \sim 0.95 \mathrm{~V} \rightarrow 0.7 \sim$ 0. 8 V (II+ series).	
		3	Added comment to "Thermal Resistance" section: These are reference values.	
Rev. 0.00e	08.12 .07	1	Added "Generation Number Table".	
$\begin{gathered} \text { Rev. } 0.00 \mathrm{f} \\ -1 \end{gathered}$	'09.02.09	1	Changed Marking Name in "Part Number Definition Table".	
		2	Added marking information to "Package Dimension Information" section.	
		3	Corrected ODT On/Off timing in "ODT pin" table.	
		4	Updated minimum frequency of QDRII+ and DDRII+ series.	
		5	Changed pin name in "Pin Arrangement" of DDRII+ series: SAO/SA1 \rightarrow NC.	
		6	Added the row to "K Truth Table": RL=2.0 and RL=2.5.	
$\begin{gathered} \text { Rev. } 0.00 \mathrm{~g} \\ -1 \end{gathered}$, 09. 02.24	1	Updated SET-UP cycles: 11+ series DLL lock time = 20us $\rightarrow 2048$ cycle.	
		2	Added comment to "ODT on/off Timing Chart" section: ODT on/off switching timings are edge aligned with CQ or /CO.	
		3	Updated "Thermal Resistance"	
Rev. 0.00h	09.03.04	1	Added "-50" speed bin to QDR \|	B2 x18/x36 series.
Rev. 0.00 i	'09.06.15	1	Updated "Package Dimensions": Mass $=0.7 \rightarrow 0.6 \mathrm{~g}, \mathrm{~A}(\mathrm{max})=1.46 \rightarrow 1.4 \mathrm{~mm}$.	
		2	Updated "Operating/Standby Supply Currents".	
Rev. 0.01a	' 09.10 .25	1	Added comment to "Power-up and Initialization Sequence" section: Apply Vref after Vdda or at the same time as Vddq.	
		2	Updated "Speed Bin Table".	
Rev. 0.02a	'10.02.01	1	Added "Renesas QDR SRAM Homepage URL" to notes of front page.	
		2	Updated "Power-up and Initialization Sequence".	
		3	Updated "DLL Constraints".	
		4	Updated "Operating Supply Current" and "Standby Supply Current"	
		5	Updated "Thermal Resistance".	
		6	Changed remarks of "AC Characteristics" on "Control signals".	
Rev. 0.03a	'10.04.01	1	Changed company name, RENESAS logo and base color from those of Renesas Technology to Renesas Electronics.	
		2	Changed vender name marking in "Package Dimensions and Marking Information" section.	
		3	Added "A" generation to 72M series.	
Rev. 0.04a	'10.06.10	1	Changed the pin description for NC pin.	
		2	Changed note 4 of "TAP Controller Instruction Set": "Clock recovery initialization cycles are required after boundary scan"	
Rev. 0.05a	' 10.06. 25	1	Changed Vddq range of 11+ series: Vddg = $1.5 \pm 0.1 \mathrm{~V} \rightarrow 1.4 \mathrm{~V} \sim \mathrm{Vdd}$.	
		2	Added Note. 8 and Note. 9 to AC Characteristics table for II+ series.	
		3	Updated Speed Bin Table for 144M.	
Rev. 0. 05b	'10.07.02	1	Added Note. 2 to Generation Number Table.	
		2	Updated Speed Bin Table for 36M and 72M.	
Rev. 0.05c	' 10.07. 24	1	Updated Operating Supply Current and Standby Supply Current Table for 36M and 72 M .	
Rev. 0.06a	' 10.09. 20	1	Changed Initialization Sequence: Initial cycle of II+ series = 2048cycles \rightarrow 20us.	
Rev. 0.07a	${ }^{\prime} 10.10 .06$	1	Added Note. 9 to AC Characteristics table for ll series.	
Rev. 0.07b	'10.10.30	1	Updated AC Characteristics for the series of RL=2.0.	
		2	Updated Speed Bin Table for 72M/36M/144M.	
		3	Added R1ONA, R1QPA series to 144M QDR lineup.	
		4	$\begin{aligned} & \text { Changed JTAG/ID Register (ID Code) : } \\ & \text { \#27""0": 36M\&72M w/o ODT, 144M, 288M } \\ & " 1 ": 36 M \& 72 \mathrm{~W} \text { w/ ODT } \\ & \# 23=" 0 ": \text { 144M\&288M w/o ODT, 36M, 72M } \\ & " 1 ": ~ 144 M \& 288 \mathrm{M} \text { w/ ODT } \\ & \#(26,25,24)=" 100 " \rightarrow " 101 "(144 \mathrm{M}), \quad " 101^{\prime \prime} \rightarrow " 110^{\prime \prime}(288 \mathrm{M}) . \end{aligned}$	

Revision History (2)

Rev.	Data	\#	Comment
Rev.0.08a	11.05.23	1	Added Note. 7 to tQVLD in AC Characteristics table for II+ series.
		2	Changed description of tQVLD in AC Characteristics table for RL=2 series: CQ high to QVLD valid $\rightarrow / C Q$ high to QVLD valid.
		3	Updated Remarks 4 of AC Characteristics table.
		4	Updated tKHKH (max) in AC Characteristics table for QDRII+ B2 series.
		5	Added $13 \times 15 \mathrm{~mm}$ package lineup to $36 \mathrm{M} \mathrm{II}+\& 72 \mathrm{M} \mathrm{II} / \mathrm{II}+$ series.
Rev.0.08b	11.07.17	1	Updated "Package Dimensions" for $13 \times 15 \mathrm{~mm}$ package.
		2	Updated "Thermal Resistance" for $13 \times 15 \mathrm{~mm}$ package.
		3	Changed Title: "Ordering Informaion" \rightarrow "Part Number Definition", "Speed Bin Table" \rightarrow "Renesas $* *$ M QDR/DDR SRAM Lineup"
Rev.0.09a	11.09.14	1	Updated Specification for ODT Option 2.
Rev.0.10a	11.12.09	1	Updated Part Number Definition table.(Added Note.4)
Rev.0.10b	12.03.12	1	Updated Part Number Definition table.(Added definition to No.10-11)
Rev.0.10c	12.06.05	1	Updated URL for Renesas QDR SRAM Homepage.
Rev.0.11	13.01.15	1	Updated "Part Number Definition" for $13 \times 15 \mathrm{~mm}$ Package

NOTES:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7. The products described in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). The products are not designed, manufactured, tested or warranted for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. Unintended usage of the products shall be made at the customer's own risk. Renesas shall have no liability for damages arising out of the uses set forth above.
8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
(2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Electronics Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

Renesas Electronics America Inc

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7 th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District,
Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District,
Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, \#06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku,
Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

[^0]: Notes: 1. QDR RAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress Semiconductor, IDT, Samsung, and Renesas Electronics Corp. (QDR Co-Development Team)
 2. The specifications of this device are subject to change without notice. Please contact your nearest Renesas Electronics Sales Office regarding specifications.
 3. Refer to
 "http://www.renesas.com/products/memory/fast_sram/qdr_sram/index.jsp" for the latest and detailed information.

