

54AC11623, 74AC11623

Octal Bus Transceivers with 3-State Outputs

These octal bus transceivers are designed for asynchronous two-way communication between data buses, The control function implementation allows for maximum flexibility in timing.

These devices allow data transmission from the A bus to the B bus, or from the B bus to the A bus, depending upon the logic levels at the enable inputs (GBA and GAB).

The enable inputs can be used to disable the device so that the buses are effectively isolated.

The dual-enable configuration gives these devices the capability to store data by simultaneous enabling of GBA and GAB. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states. The 8-bit codes appearing on the two sets of buses will be identical for the AC11623.

The 54AC11623 is characterized for operation over the full military temperature range of -55°C to 125°C. The 74AC11623 is characterized for operation from -40°C to 85°C.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 Class O Military
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

© 2018 Rochester Electronics, LLC. All Rights Reserved 12192018

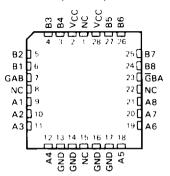
- Local Bus-Latch Capability
- Flow-Through Architecture to Optimize PCB
 Layout
- Center-Pin V_{CC} and GND Configurations to Minimize High-Speed Switching Noise
- EPIC[™] (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.

These devices allow data transmission from the A bus to the B bus, or from the B bus to the A bus, depending upon the logic levels at the enable inputs (GBA and GAB).

The enable inputs can be used to disable the device so that the buses are effectively isolated.


The dual-enable configuration gives these devices the capability to store data by simultaneous enabling of $\overline{G}BA$ and GAB. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states. The 8-bit codes appearing on the two sets of buses will be identical for the AC11623.

The 54AC11623 is characterized for operation over the full military temperature range of -55° C to 125° C. The 74AC11623 is characterized for operation from -40° C to 85° C.

54AC1162 74AC11623 ("		OR N	
A1[ΓŪ	24]GAB
A 2 🗌	2	23]B1
A3 [3	22]B2
A4 [4	21]B3
GND 🗌	5	20]B4
GND 🗌	6	19]∨cc
GND 🗌	7	18]∨cc
GND 🗌	a	17	B5
A5 🗌	þ	16] B6
A6[10	15]87
A7 [11	14] 88
A8[12	13]GBA

TI0091-D2957, JULY 1987-REVISED MARCH 1990

54AC11623 ... FK PACKAGE (TOP VIEW)

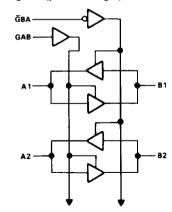
NC---No internal connection

FUNCTION TABLE

ENABLE	INPUTS	
ĞBA	GAB	OPERATION
L	L	B data to A bus
н	н	A data to B bus
н	L	Isolation
		B data to A bus,
L	н	A data to B bus

EPIC is a trademark of Texas Instruments Incorporated.

INLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication data. Products contorm to specifications per the terms of tesse instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright @ 1990, Texas Instruments Incorporated

2-536

logic diagram (positive logic)

TI0091-D2957, JULY 1987-REVISED MARCH 1990

logic symbol[†] <u>Ğва (13)</u> EN1 GAB (24) EN2 (23) — B1 A1 (1) ₩ 1 \triangleright 2 ∇ (22) 12 - B2 Δ2 (21) (3) AЗ - вз (20) — 84 14 ۵4 (17) (5) A5 . B2 116) (10 **A**6 . B6 (15) (11 Δ7 . 87 14 112 88

TO OTHER SIX TRANSCEIVERS

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, VI (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Output voltage range, VO (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, IK (VI < 0 or VI > VCC)	± 20 mA
Output clamp current, I_{OK} (VO < 0 or VO > VCC)	± 50 mA
Continuous output current, IO ($V_O = 0$ to V_{CC})	± 50 mA
Continuous current through V _{CC} or GND pins	± 200 mA
Storage temperature range	65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

D2957, JULY 1987-REVISED MARCH 1990-TI0091

recommended operating conditions

			54AC11623			74AC11623			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		3	5	5.5	3	5	5.5	v
		V _{CC} = 3 V	2.1			2.1			
⊻н	High-level input voltage	$V_{CC} = 4.5 V$	3.15			3.15			v
		V _{CC} = 5.5 V	3.85			3.85		·i	
	Low-level input voltage	V _{CC} 3 V			0.9			0.9	v
VIL		V _{CC} = 4.5 V		-	1.35			1.35	
		V _{CC} = 5.5 V			1.65			1.65	
VE	Input voltage		0		Vcc	0		Vcc	V
Vo	Output voltage		0		VCC	0		Vcc	v
	High-level output current	V _{CC} = 3 V			- 4			4	mA
юн		V _{CC} - 4.5 V			24			- 24	
		$V_{\rm CC} = 5.5 V$			24			- 24	
		V _{CC} - 3 V			12			12	mA
^I OL	Low-level output current	V _{CC} = 4.5 V	_		24			24	
		VCC 5.5 V			24			24	
$\Delta t / \Delta v$	Input transition rise or fall rate	· · ·	0		10	0		10	ns/V
TA	Operating free-air temperature		55		125	- 40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

TEST CONDITIONS		TA = 25°C			74AC11623		
TEST CONDITIONS	VCC	MIN	TYP MAX	MIN MAX	MIN MAX	UNIT	
	зv	2.9	·····	2.9	2.9		
ЮН 50 µA	4.5 V	4.4		4.4	4.4		
	5.5 V	5.4		5.4	5.4		
IOH - 4 mA	3 V	2.58		2.4	2.48		
	4.5 V	3.94		3.7	3.8	v	
OH 24 mA	5.5 V	4.94		4.7	4.B		
IOH 50 mA [†]	5.5 V			3.85			
OH 75 mA [†]	5.5 V				3.85		
	3 V		0.1	0.1	0.1		
lOL - 50 μA	4.5 V		0.1	0.1	0.1		
	5.5 V		0.1	0.1	0.1		
IOL = 12 mA	3 V		0.36	0.5	0.44		
	4.5 V		0.36	0.5	0.44	V	
IOL = 24 mA	5.5 V		0.36	0.5	0.44		
IOL = 50 mA [†]	5.5 V			1.65			
IOL 75 mAt	5.5 V	1			1.65		
$V_0 = V_{CC} \text{ or GND}$	5.5 V	1	± 0.5	± 10	± 5	μA	
B VI = VCC or GND	5.5 V		± 0.1	± 1	± 1	μA	
$V_I = V_{CC} \text{ or } GND, I_O = 0$	5.5 V		8	160	80	μA	
B VI = V _{CC} or GND	5 V		4	-		pF	
VO = VCC or GND	5 V		12			pF	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c } \hline \mbox{TEST CONDITIONS} & VCC & \hline \mbox{MIN} \\ \hline \mbox{MIN} & 3 V & 2.9 \\ \hline \mbox{3 V} & 2.9 \\ \hline \mbox{4.5 V} & 4.4 \\ \hline \mbox{5.5 V} & 5.4 \\ \hline \mbox{10H} & 50 \ \mu A & \hline \mbox{3.5 V} & 5.5 V \\ \hline \mbox{10H} & 24 \ m A & \hline \mbox{3.5 V} & 3.94 \\ \hline \mbox{10H} & 24 \ m A & \hline \mbox{5.5 V} & 4.94 \\ \hline \mbox{10H} & 50 \ m A^{1} & 5.5 V \\ \hline \mbox{10H} & 75 \ m A^{1} & 5.5 V \\ \hline \mbox{10H} & 75 \ m A^{1} & 5.5 V \\ \hline \mbox{10H} & 75 \ m A^{1} & 5.5 V \\ \hline \mbox{10L} & 12 \ m A & 3 V \\ \hline \mbox{10L} & 12 \ m A & 3 V \\ \hline \mbox{10L} & 24 \ m A & \hline \mbox{3.5 V} & \hline \\ \hline \mbox{10L} & 24 \ m A & \hline \mbox{3.5 V} & \hline \\ \hline \mbox{10L} & 50 \ m A^{1} & 5.5 V \\ \hline \mbox{10L} & 75 \ m A^{1} & 75 \$	$\begin{array}{ c c c c c c c } \hline \mbox{VCC} & \hline \mbox{MIN} & \mbox{TYP} & \mbox{MAX} \\ \hline \mbox{MIN} & \mbox{TYP} & \mbox{MAX} \\ \hline \mbox{3V} & \mbox{2.9} \\ \hline \mbox{4.5V} & \mbox{4.4} \\ \hline \mbox{5.5V} & \mbox{5.4} \\ \hline \mbox{10H} & \mbox{2 fm} \\ \hline \mbox{10H} & \mbox{10H} & \mbox{10H} \\ \hline \mbox{10H} & \mbox{10H} & \mbox{10H} \\ \hline \mbox{10H} & \mbox{10H} & \mbox{10H} & \mbox{10H} \\ \hline \mbox{10H} & \mbox{10H} & \mbox{10H} & \mbox{10H} \\ \hline \mbox{10H} & \mbox{10H} & \mbox{10H} & \mbox{10H} & \mbox{10H} \\ \hline \mbox{10H} & \mb$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

^t Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

[‡]For I/O ports, the parameter IOZ includes the input leakage current.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goods. Tesse instruments reserves the right to change or discontinue these products without notice.

2-538

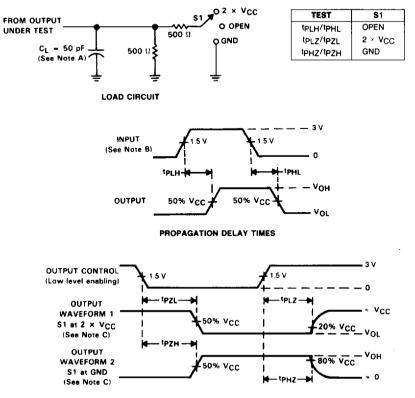
TI0091-D2957, JULY 1987-REVISED MARCH 1990

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$T_A = 25^{\circ}C$		54AC11623		74AC11623		「 	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	A as D	D 4	1.5	6.8	9.2	1.5	11.4	1.5	10.5	
^t PHL	A or B	or B B or A	1.5	6.3	8.2	1.5	10.6	1.5	9.3	ns
^t PZH	GBA		1.5	8	10.6	1.5	13.3	1.5	12.2	
^t PZL	GBA	A	1.5	7.9	10.4	1.5	12.5	1.5	11.6	ns
^t PHZ	ĞВА	A	1.5	7	8.7	1.5	9.7	1.5	9.3	
^t PLZ	GBA		1.5	8	9.9	1.5	11.3	1.5	10.7	ns
^t PZH			1.5	8.2	10.4	1.5	13.2	1.5	12	
^t PZL	GAB	В	1.5	8.3	10.8	1.5	13.2	1.5	12.2	ns
^t PHZ			1.5	7	8.8	1.5	9.8	1.5	9.4	
^t PLZ	GAB B	В	1.5	8	9.9	1.5	11.1	1.5	10.6	ns

switching characteristics over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 1)

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)		T,	$T_A = 25^{\circ}C$		54AC11623		74AC11623			
FANAMETEN			MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
^t PLH	A as D	D A	1.5	4.9	6.B	1.5	8.4	1.5	7.8		
^t PHL	A or B	B or A	1.5	4.6	6.4	1.5	7.7	1.5	7.1	ns	
^t PZH	ĞВА		1.5	5.8	7.9	1.5	9.8	1.5	9		
tPZL	GBA	A	1.5	5.9	8.1	1.5	9.9	1.5	9.1	ns	
^t PHZ	GBA		1.5	6.1	7.7	1.5	8.6	1.5	8.3		
tPLZ	GBA	A	A	1.5	6.6	8.2	1.5	9.3	1.5	8.8	ns
^t PZH	GAB B	P	1.5	6.2	8	1.5	10	1.5	9.2		
tPZL		в	1.5	6.1	8.3	1.5	10.2	1.5	9.4	ns	
^t PHZ	GAB	В	1.5	6.2	7.8	1.5	8.7	1.5	8.3		
^t PLZ	UND	D	1.5	6.5	8.1	1.5	9.2	1.5	8.8	ns	


operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS	TYP	UNIT
Card		Outputs enabled	C. 50-54 4 MU-	49	oF
C _{pd} Power dissipation capacitance per transceiver	Outputs disabled	CL 50 pF, 1 1 MHz	9	_ p⊢	

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goess. Texas instruments reserves the right to change or discontinue these products without notice.

D2957, JULY 1987-REVISED MARCH 1990-TI0091

PARAMETER MEASUREMENT INFORMATION

ENABLE AND DISABLE TIMES

- NOTES: A. CL includes probe and jig capacitance.
 - B. Input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_f \sim 3 ns, t_f = 3 ns.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. The outputs are measured one at a time with one input transition per measurement.

FIGURE 1. LOAD CIRCUIT AND VOLTAGE WAVEFORMS

