September 2001 Revised July 2002

GTLP36T612 36-Bit LVTTL/GTLP Universal Bus Transceiver

General Description

FAIRCHILD

SEMICONDUCTOR

The GTLP36T612 is an 36-bit universal bus transceiver which provides LVTTL to GTLP signal level translation. It allows for transparent, latched and clocked modes of data transfer. The device provides a high speed interface for cards operating at LVTTL logic levels and a backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus settling time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transistor logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is Process, Voltage, and Temperature (PVT) compensated. Its function is similar to BTL or GTL but with different output levels and receiver thresholds. GTLP output LOW level is less than 0.5V, the output HIGH is 1.5V and the receiver threshold is 1.0V.

Features

- Bidirectional interface between GTLP and LVTTL logic levels
- Designed with edge rate control circuitry to reduce output noise on the GTLP port
- Partitioned as two 18-Bit transceivers with individual latch timing and output control
- V_{REF} pin provides external supply reference voltage for receiver threshold adjustibility
- Special PVT compensation circuitry to provide consistent performance over variations of process, supply voltage and temperature
- TTL compatible driver and control inputs
- Designed using Fairchild advanced BiCMOS technology
- Bushold data inputs on A port to eliminate the need for
- external pull-up resistors for unused inputs Power up/down and power off high impedance for live insertion
- Open drain on GTLP to support wired-or connection
- Flow through pinout optimizes PCB layout
- D-type flip-flop, latch and transparent data paths
- A Port source/sink -24mA/+24mA
- B Port sink +50mA
- For more information see AN-5026, Using BGA Packages

Ordering Code:

Order Number	Package Number	Package Description
GTLP36T612G (Note 1)(Note 2)	BGA114A	114-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide

Note 1: Ordering code "G" indicates Trays.

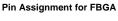
Note 2: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

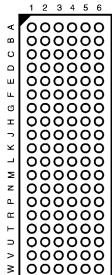
© 2002 Fairchild Semiconductor Corporation DS500590

GTLP36T612

Truth Table

(Note 3)


	,					
	Inputs					Mode
CEAB	OEAB	LEAB	CLKAB	A	в	
Х	Н	Х	Х	Х	Z	Latched
L	L	L	Н	х	B ₀ (Note 4)	storage
L	L	L	L	х	B ₀ (Note 5)	of A data
Х	L	Н	Х	L	L	Transparent
х	L	Н	Х	н	н	
L	L	L	\uparrow	L	L	Clocked
L	L	L	Ŷ	н	н	storage
						of A data
Н	L	L	Х	Х	B ₀ (Note 5)	Clock inhibit


Note 3: A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{\text{OEBA}},$ LEBA, CLKBA, and $\overline{\text{CEBA}}.$

Note 4: Output level before the indicated steady state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW. Note 5: Output level before the indicated steady-state input conditions

were established.

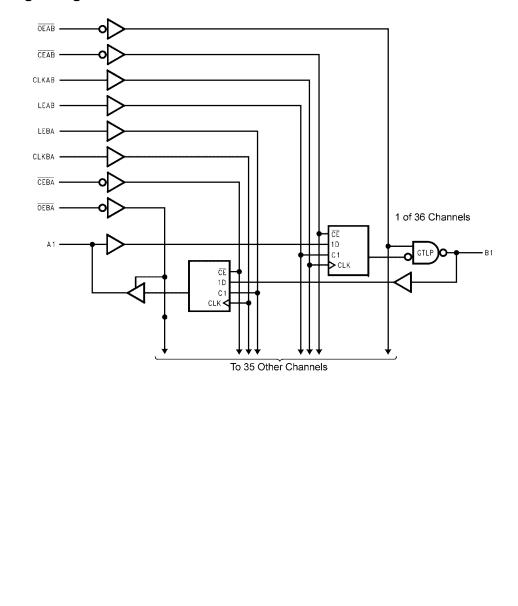
Connection Diagram

(Top Thru View)

Pin Descriptions

Pin Names	Description
OEAB	A-to-B Output Enable (Active LOW) (LVTTL Level)
OEBA	B-to-A Output Enable (Active LOW) (LVTTL Level)
CEAB	A-to-B Clock/LE Enable (Active LOW) (LVTTL Level)
CEBA	B-to-A Clock/LE Enable (Active LOW) (LVTTL Level)
LEAB	A-to-B Latch Enable (Transparent HIGH) (LVTTL Level)
LEBA	B-to-A Latch Enable (Transparent HIGH) (LVTTL Level)
V _{REF}	GTLP Input Threshold Reference Voltage
CLKAB	A-to-B Clock (LVTTL Level)
CLKBA	B-to-A Clock (LVTTL Level)
A ₁ -A ₁₈	A-to-B Data Inputs or B-to-A 3-STATE Outputs
B ₁ –B ₁₈	B-to-A Data Inputs or A-to-B Open Drain Outputs

FBGA Pin Assignments


Number in front of each pin indicates word.

	-	-				
	1	2	3	4	5	6
Α	1A ₂	1A ₁	10EAB	1CLKAB	1B ₂	1B ₁
В	1A ₄	1A ₃	1LEAB	1CEAB	1B ₄	1B ₃
С	1A ₆	1A ₅	V _{CC}	V _{CC}	1B ₆	1B ₅
D	1A ₈	1A ₇	GND	GND	1B ₈	1B ₇
Е	1A ₁₀	1A ₉	GND	GND	1B ₁₀	1B ₉
F	1A ₁₂	1A ₁₁	GND	GND	1B ₁₂	1B ₁₁
G	1A ₁₄	1A ₁₃	V _{CC}	V _{REF}	1B ₁₄	1B ₁₃
н	1A ₁₆	1A ₁₅	10EBA	1CEBA	1B ₁₆	1B ₁₅
J	1A ₁₈	1A ₁₇	1LEBA	1CLKBA	1B ₁₈	1B ₁₇
к						
L	2A ₂	2A ₁	20EAB	2CLKAB	2B ₂	2B ₁
м	2A ₄	2A ₃	2LEAB	2CEAB	2B ₄	2B ₃
N	2A ₆	2A ₅	V _{CC}	V _{CC}	2B ₆	2B ₅
Р	2A ₈	2A ₇	GND	GND	2B ₈	2B ₇
R	2A ₁₀	2A ₉	GND	GND	2B ₁₀	2B ₉
Т	2A ₁₂	2A ₁₁	GND	GND	2B ₁₂	2B ₁₁
U	2A ₁₄	2A ₁₃	V _{CC}	V _{REF}	2B ₁₄	2B ₁₃
V	2A ₁₆	2A ₁₅	20EBA	2CEBA	2B ₁₆	2B ₁₅
w	2A ₁₈	2A ₁₇	2LEBA	2CLKBA	2B ₁₈	2B ₁₇

Functional Description

The GTLP36T612 is an 36-bit registered transceiver containing D-type flip-flop, latch and transparent modes of operation for the data path. Data flow in each direction is controlled by the clock enables (CEAB and CEBA), latch enables (LEAB and LEBA), clock (CLKAB and CLKBA) and output enables (OEAB and OEBA). The clock enables (CEAB and CEBA) and the output enables (OEAB and OEBA) control the 18 bits of data for the A-to-B and B-to-A directions respectively. For A-to-B data flow, when CEAB is LOW, the device operates on the LOW-to-HIGH transition of CLKAB for the flip-flop and on the HIGH-to-LOW transition of LEAB for the latch path. That is, if CEAB is LOW and LEAB is LOW the A data is latched regardless as to the state of CLKAB (HIGH or LOW) and if LEAB is HIGH the device is in transparent mode. When OEAB is LOW the outputs are active. When OEAB is HIGH the outputs are HIGH impedance. The data flow of B-to-A is similar except that CEBA, OEBA, LEBA, and CLKBA are used.

Logic Diagram

Absolute Maximum Ratings(Note 6)

		Conditions (Note 8)
Supply Voltage (V _{CC})	-0.5V to +4.6V	
DC Input Voltage (VI)	-0.5V to +4.6V	Supply Voltage V _{CC} /V _{CCQ}
DC Output Voltage (V _O)		Bus Termination Voltage (V _{TT})
Outputs 3-STATE	-0.5V to +4.6V	GTLP
Outputs Active (Note 7)	–0.5V to $V_{CC}{+}0.5V$	V _{REF}
DC Output Sink Current into		Input Voltage (V _I)
A Port I _{OL}	48 mA	on A Port and Control Pins
DC Output Source Current from		on B Port
A Port I _{OH}	–48 mA	HIGH Level Output Current (I _{OH})
DC Output Sink Current into		A Port
B Port in the LOW State, I _{OL}	100 mA	LOW Level Output Current (I _{OL})
DC Input Diode Current (IIK)		A Port
V ₁ < 0V	–50 mA	B Port
DC Output Diode Current (I _{OK})		Operating Temperature (T _A)
V _O < 0V	–50 mA	Note 6: Absolute Maximum continuous ratio
$V_{O} > V_{CC}$	+50 mA	which damage to the device may occur. Exp conditions beyond those indicated may adve
ESD Performance	>2000V	Functional operation under absolute maxim

Storage Temperature (T_{STG}) -65°C to +150°C

Recommended Operating

(IOH)	
A Port	–24 mA
LOW Level Output Current (I _{OL})	
A Port	+24 mA
B Port	+50 mA
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
lote 6: Absolute Maximum continuous ratings /hich damage to the device may occur. Exposu onditions beyond those indicated may adverse incriting operation under absolute maximum	ure to these conditions or ly affect device reliability.

3.15V to 3.45V

1.47V to 1.53V 0.98V to 1.02V

0.0V to 3.45V

0.0V to 3.45V

not implied. Note 7: I_{O} Absolute Maximum Rating must be observed.

Note 8: Unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Over Recommended Operating Free-Air Temperature Range, $V_{REF} = 1.0V$ (unless otherwise noted).

	Symbol	Test Condition	IS	Min	Typ (Note 9)	Max	Units	
VIH	B Port			V _{REF} +0.05	. ,	V _{TT}		
	Others			2.0			V	
VIL	B Port			0.0		V _{REF} - 0.05		
	Others					0.8	V	
V _{REF}	GTLP (Note 10)				1.0		V	
VIK		V _{CC} = 3.15V	I _I = -18 mA			-1.2	V	
V _{OH}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 11)	I _{OH} = -100 μA	V _{CC} -0.2				
		V _{CC} = 3.15V	I _{OH} = -8 mA	2.4			V	
			I _{OH} = -24mA	2.0				
V _{OL}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 11)	I _{OL} = 100 μA			0.2	v	
		V _{CC} = 3.15V	$I_{OL} = 24mA$			0.5	v	
	B Port	V _{CC} = 3.15V	I _{OL} = 40 mA			0.40	v	
			I _{OL} = 50 mA			0.55	v	
l _l	Control Pins	V _{CC} = Min to Max (Note 11)	$V_I = 3.45V \text{ or } 0V$			±5	μA	
	A Port	$V_{CC} = 3.45V$	$V_I = 0V$			-10	μA	
			$V_1 = 3.45$			10	μΛ	
	B Port	$V_{CC} = 3.45V$	$V_I = V_{CC}$			5	μA	
			$V_I = 0$			-5	μΑ	
I _{OFF}	A Port and Control Pins	$V_{CC} = 0$	V_1 or $V_0 = 0$ to 3.45V			30	μA	
I _{I(hold)}	A Port	V _{CC} = 3.15V	$V_{I} = 0.8V$	75			μA	
			$V_{I} = 2.0V$			-75	μΑ	
I _{OZH}	A Port	V _{CC} = 3.45V	V _O = 3.45			10	μA	
	B Port		V _O = 3.45V			5	μΑ	
I _{OZL}	A Port	$V_{CC} = 3.45V$	$V_{O} = 0V$			-10	μA	
	B Port		$V_{O} = 0V$			-5	μΛ	
Icc	A or B Ports	$V_{CC} = 3.45V$	Outputs HIGH		60	80		
(V_{CC}/V_{CCQ})		$I_{O} = 0$	Outputs LOW		60	80	mA	
		$V_I = V_{CC}$ or GND	Outputs Disabled		60	90		

DC Electrical Characteristics (Continued)

G
-
Ē
τ
ŵ
ດ
-
ົ

Symbol Test Conditions		ns	Min	Typ (Note 9)	Max	Units	
∆I _{CC} (Note 12)	A Port and Control Pins	$V_{CC} = 3.45V,$ A or Control Inputs at V_{CC} or GND	One Input at 2.7V			2	mA
Ci	Control Pins		$V_I = V_{CC} \text{ or } 0$		6		
	A Port		$V_I = V_{CC} \text{ or } 0$		7.5		pF
	B Port		$V_I = V_{CC} \text{ or } 0$		9.0		

Note 9: All typical values are at V_{CC} = 3.3V, V_{CCQ} = 3.3V, and T_A = 25^{\circ}C.

Note 10: GTLP V_{REF} and V_{TT} are specified to 2% tolerance since signal integrity and noise margin can be significantly degraded if these supplies are noisy. In addition, V_{TT} and Rterm can be adjusted beyond the recommended operating conditions to accommodate backplane impedances other than 50 Ω , but must remain within the boundaries of the DC Absolute Maximum ratings. Similarly V_{REF} can be adjusted to optimize noise margin.

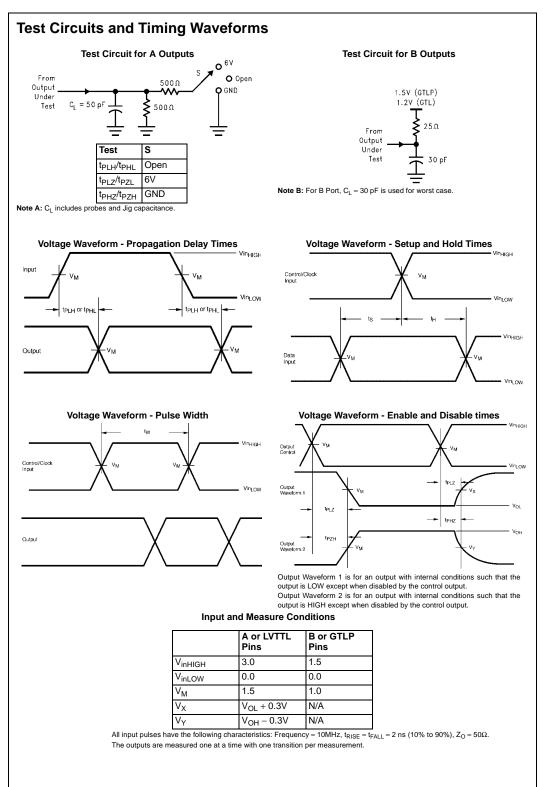
Note 11: For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions.

Note 12: This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

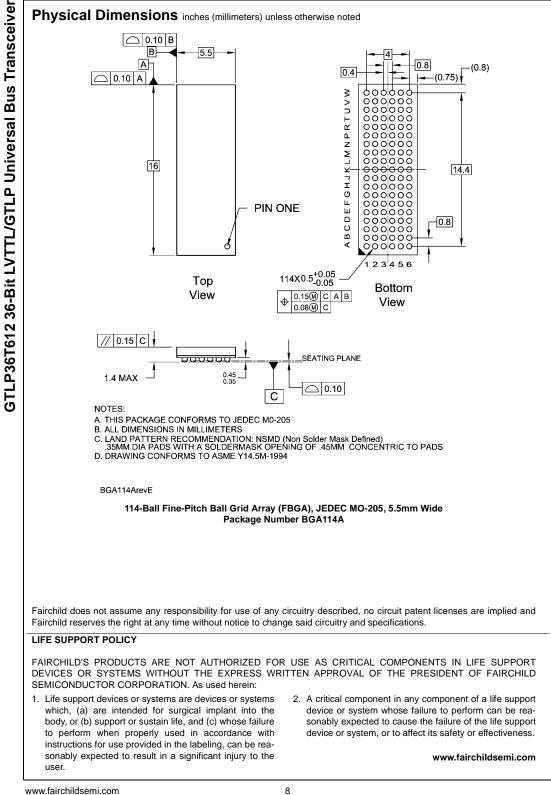
AC Operating Requirements

Over recommended ranges of supply voltage and operating free-air temperature, V_{REF} = 1.0V (unless otherwise noted).

Symbol		Test Conditions	Min	Max	Unit	
f _{MAX}	Maximum Clock Frequency		175		MHz	
t _{WIDTH} Pulse Duration	Pulse Duration	LEAB or LEBA HIGH	3.0			
		CLKAB or CLKBA HIGH or LOW	3.0		ns	
t _{SU}	Setup Time	A before CLKAB↑	1.1			
	B before CLKBA↑	3.0				
		A before LEAB	1.1			
		B before LEBA	2.7		ns	
		CEAB before CLKAB↑	1.2			
		CEBA before CLKBA↑	1.4			
t _{HOLD}	Hold Time	A after CLKAB↑	0.0			
		B after CLKBA↑	0.0		ns	
		A after LEAB	0.8			
		B after LEBA	0.0			
	CEAB after CLKAB [↑]	1.0				
		CEBA after CLKBA↑	1.9		1	


2
-
Q
F
Q
3
Δ
F
Ċ

AC Electrical Characteristics


Over recommended range of supply voltage and operating free-air temperature, $V_{REF} = 1.0V$ (unless otherwise noted). $C_{v} = 30 \text{ pF}$ for B Port and $C_{v} = 50 \text{ pF}$ for A Port

Symbol	From (Input)	To (Output)	Min	Typ (Note 13)	Max	Unit
t _{PLH}	А	В	2.1	4.1	6.3	
t _{PHL}			1.0	2.7	4.4	ns
t _{PLH}	LEAB	В	2.2	4.2	6.3	ns
t _{PHL}			1.0	2.4	4.2	115
t _{PLH}	CLKAB	В	2.2	4.4	6.5	ns
t _{PHL}			1.0	2.5	4.4	115
t _{PLH}	OEAB	В	2.0	3.8	5.6	
t _{PHL}			1.0	2.6	4.3	ns
t _{RISE}	Transition Time, B Outp	outs (20% to 80%)		3.1		ns
t _{FALL}	Transition Time, B Outp	outs (20% to 80%)		2.1		115
t _{PLH}	В	Α	1.8	3.8	5.8	ns
t _{PHL}			1.8	3.8	5.8	113
t _{PLH}	LEBA	A	0.3	2.2	4.6	ns
t _{PHL}			0.4	2.4	4.6	113
t _{PLH}	CLKBA	A	0.5	2.4	4.6	ns
t _{PHL}			0.6	2.6	4.6	113
t _{PZH} , t _{PZL}	OEBA	A	0.3	2.7	5.2	-
t _{PHZ} , t _{PLZ}			0.3	2.5	5.2	ns

Note 13: All typical values are at V_{CC} = 3.3V, and T_A = 25 ^{\circ}C.

GTLP36T612

