National Semiconductor is now part of

Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

LMP8671 LMP8672 LMP8674

Single, Dual, and Quad 40V Low Noise Precision Amplifiers

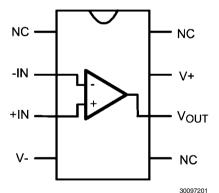
General Description

The LMP8671/2/4 combines great precision, low noise and a large operating voltage range to provide a high SNR and a wide dynamic range. Its AC performance allows it to be used over a wide frequency without degradation. It is the ideal choice for applications requiring DC precision and low noise such as precision PLL filters, multi feedback and multi pole active filters, GPS receivers and precision control loop systems. The LMP8671/2/4 offers an extremely high open loop gain of 135dB, low voltage noise density ($2.5nV/\sqrt{Hz}$), and a superb linearity of 0.00009%. These characteristics drastically reduce gain error which is a challenge in accurate systems requiring higher gains such as data acquisition systems. To ensure that the most challenging loads are driven without compromise, the LMP8671/2/4 has a high slew rate of ±20V/ µs and an output current capability of ±26mA.

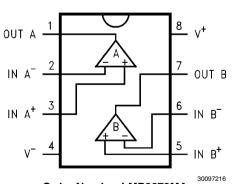
The LMP8671/2 family of high-voltage amplifiers are available in SOIC-8, the LMP8674 in SOIC-14.

Key Specifications

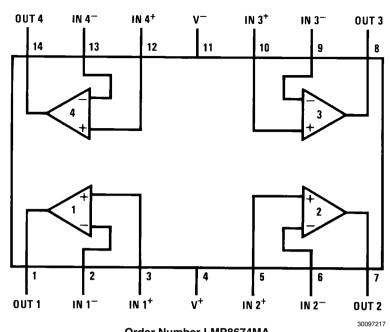
Input Offset Voltage	0.4mV
■ TC V _{OS}	2µV/°C (max)
Power Supply Voltage Range	±2.5V to ±20V
Voltage Noise Density	$2.5 \text{nV} / \sqrt{\text{Hz}}$
Slew Rate	±20V/µs
Gain Bandwidth Product	55MHz
Open Loop Gain	135dB
Input Bias Current	10nA

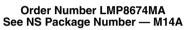

Features

- Output short circuit protection
- PSRR and CMRR exceed 110dB
- Best in class linearity (135dB)


Applications

- Low noise industrial applications including test, measurement, and ultrasound
- Precision Active Filters
- PLL Filters
- 4-20mA Current Loops
- Motor Control


Connection Diagrams



Order Number LMP8671MA See NS Package Number — M08A

Order Number LMP8672MA See NS Package Number — M08A

Absolute Maximum Ratings (Note 1, Note

2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage	
$(V_{S} = V^{+} - V^{-})$	46V
Storage Temperature	–65°C to 150°C
Input Voltage	(V-) - 0.7V to (V+) + 0.7V
Output Short Circuit (Note 3)	Continuous
Power Dissipation	Internally Limited
ESD Rating (Note 4)	2000V
ESD Rating (<i>Note 5</i>)	
Pins 1, 4, 7 and 8	200V

Operating Ratings

Temperature Range

 $T_{MIN} \le T_A \le T_{MAX}$ Supply Voltage Range LMP8671/2/4 $-40^{\circ}\mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ}\mathrm{C}$

 $\pm 2.5V \le V_S \le \pm 22V$

Electrical Characteristics for the LMP8671/2/4 (*Note 1*) The following specifications apply for $V_S = \pm 20V$, $R_L = 2k\Omega$, $R_{SOURCE} = 10\Omega$, $f_{IN} = 1$ kHz, $T_A = 25$ °C, unless otherwise specified. **Boldface** limits apply at the temperature extremes.

			LMP8671/2/4		
Symbol	Parameter	Conditions	Typical Limit		Units
			(<i>Note 6</i>)	(Note 7)	(Limits)
V _{os}	Offset Voltage		±100	±400 ±750	μV (max
ΔV _{OS} /ΔTemp	Average Input Offset Voltage Drift vs Temperature	–40°C ≤ T _A ≤ 125°C	0.1	2	μV/°C (max)
		$V_{CM} = 0V$		•	•
		LMP8671/4	10	±75 ±95	nA (max
I _B	Input Bias Current	$V_{CM} = 0V$	•	•	•
		LMP8672	50	±200 ±250	nA (max
I _{OS} Input Offset C		$V_{CM} = 0V$	•	3	
	land Offerst Oursest	LMP8671/4	11	±50 ±95	nA (max
	Input Offset Current	$V_{CM} = 0V$	3	•	•
		LMP8672	25	±100 ±125	nA (max
ΔI _{OS} /ΔTemp	Input Bias Current Drift vs Temperature	–40°C ≤ T _A ≤ 125°C	0.2		nA/°C
V _{IN-CM}	Common-Mode Input Voltage Range		+17.1 -16.9		V (min) V (min)
7	Differential Input Impedance		30		kΩ
Z _{IN}	Common Mode Input Impedance	-10V <vcm<10v< td=""><td>1000</td><td></td><td>MΩ</td></vcm<10v<>	1000		MΩ
-	Equivalent Input Noise Voltage	20Hz to 20kHz	0.34	0.65	μV _{RMS} (max)
e _n	Equivalent Input Noise Density	f = 1kHz	2.5	4.7	nV/√Hz (max)
'n	Current Noise Density	f = 1kHz f = 10Hz	1.6 3.1		pA/√Hz
THD+N	Total Harmonic Distortion + Noise	$A_V = 1$, $V_{OUT} = 3V_{rms}$, $R_L = 600\Omega$	0.00003	0.00009	% (max
s	Settling time	$A_V = -1$, 10V step, $C_L = 100 pF$ 0.1% error range	1.2		μs
GBWP	Gain Bandwidth Product		55	45	MHz (mii

Symbol	Parameter	Conditions	LMP8671/2/4		
			Typical	Limit	Units (Limits)
			(<i>Note 6</i>)	(Note 7)	
SR	Slew Rate		±20	±15	V/µs (min)
PSRR	Average Input Offset Voltage Shift vs Power Supply Voltage	(Note 8)	125	110 100	dB (min)
CMRR	Common-Mode Rejection	–15V≤Vcm≤15V	115	105 100	dB (min)
A _{VOL}	Open Loop Voltage Gain	$-15V \le Vout \le 15V$ R _L = 2k Ω	135	125	dB (min)
V _{OUTMAX}	Maximum Output Voltage Swing	$R_L = 2k\Omega$	±19.0	±18.8 ±18.6	V (min)
I _{OUT-CC}	Instantaneous Short Circuit Current		+53 -42		mA
R _{OUT}	Output Impedance	f _{IN} = 10kHz Closed-Loop Open-Loop	0.01 13		Ω
I _{OUT}	Output Current	$R_L = 2k\Omega$	9.5	9.3	mA (min)
		I _{OUT} = 0mA	<u>.</u>		•
I _S Tota	Total Quiescent Current	LMP8671	5	6 8	mA (max)
		LMP8672	12.5	16	mA (max)
		LMP8674	20	22	mA (max)

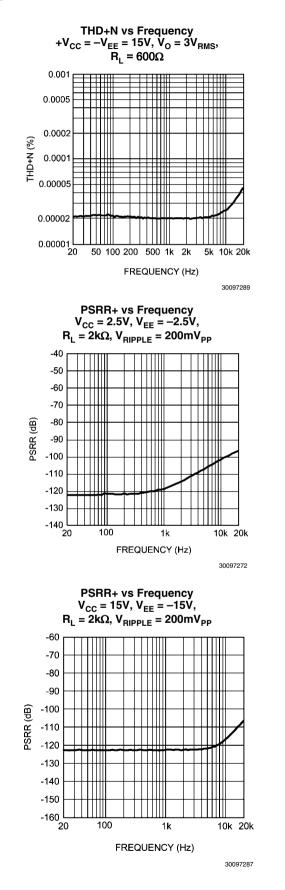
Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

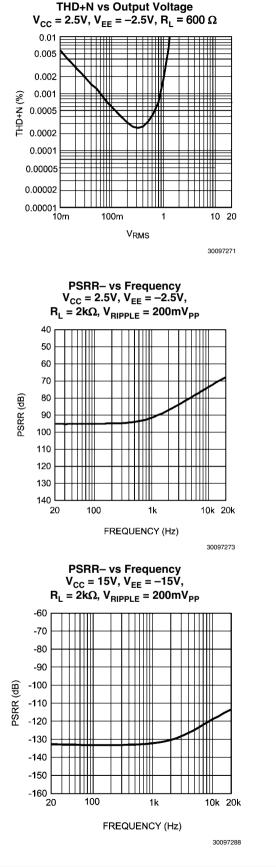
Note 2: The *Electrical Characteristics* tables list guaranteed specifications under the listed *Recommended Operating Conditions* except as otherwise modified or specified by the *Electrical Characteristics Conditions* and/or Notes. Typical specifications are estimations only and are not guaranteed.

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}$ or the number given in *Absolute Maximum Ratings*, whichever is lower.

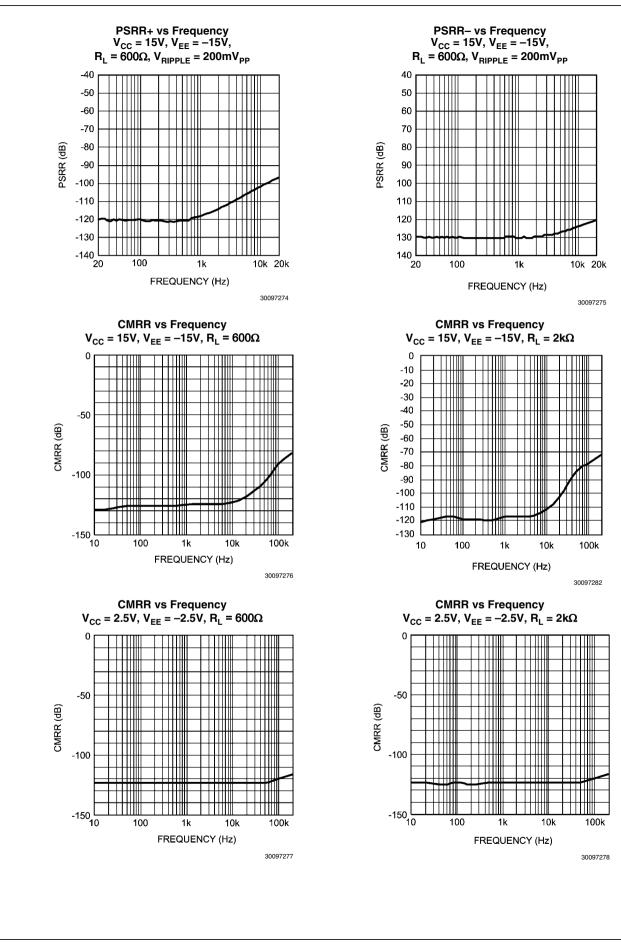
Note 4: Human body model, applicable std. JESD22-A114C.

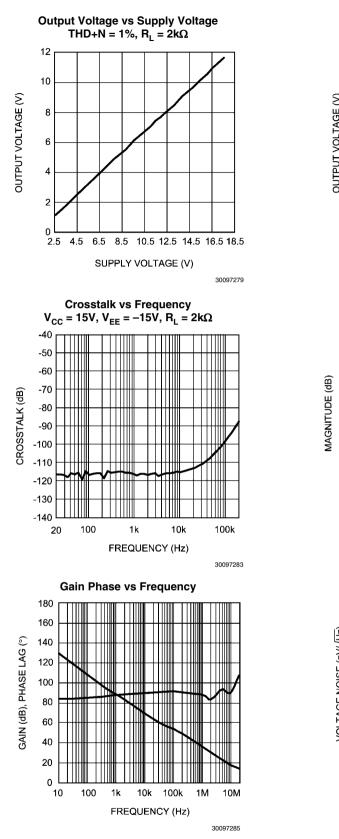
Note 5: Machine model, applicable std. JESD22-A115-A.

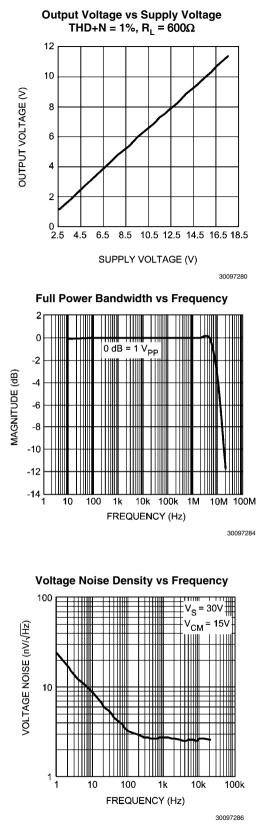

Note 6: Typical values represent most likely parametric norms at $T_A = +25^{\circ}C$, and at the *Recommended Operation Conditions* at the time of product characterization and are not guaranteed.

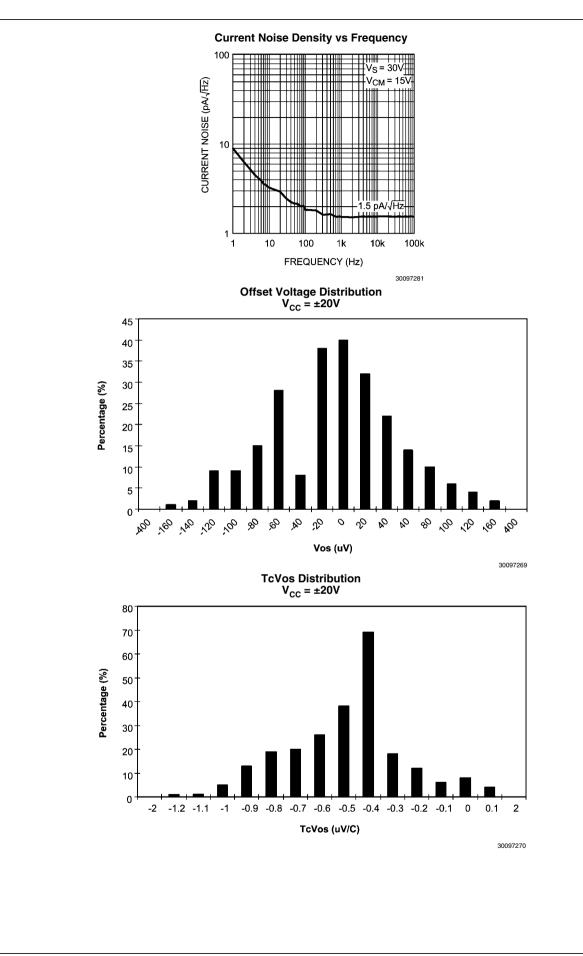

Note 7: Datasheet min/max specification limits are guaranteed by test or statistical analysis.

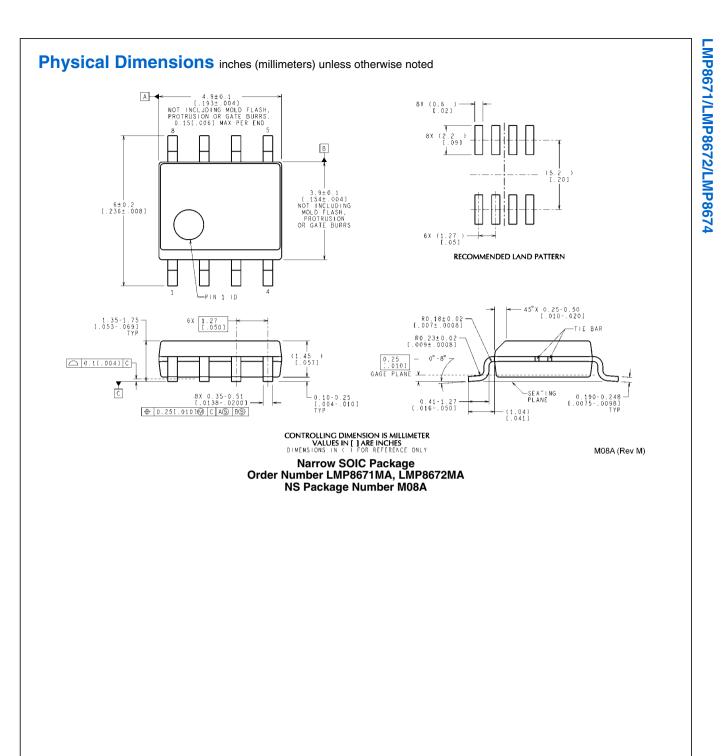
Note 8: PSRR is measured as follows: For V_S , V_{OS} is measured at two supply voltages, ±5V and ±20V, PSRR = |20log($\Delta V_{OS}/\Delta V_S$)|.

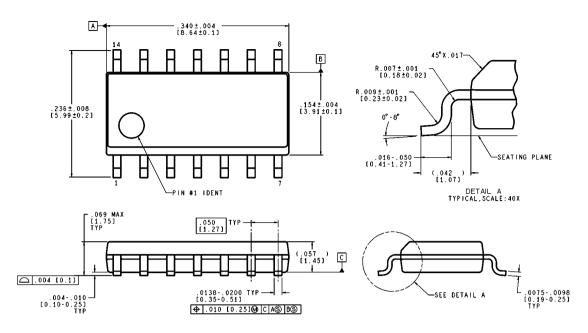

LMP8671/LMP8672/LMP8674


Typical Performance Characteristics






5



CONTROLLING DIMENSION IS INCH VALUES IN | | ARE MILLIMETERS

> Narrow SOIC Package Order Number LMP8674MA NS Package Number M14A

M14A (Rev J)

Notes

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com