Datasheet

1. Features and Benefits

- IMC-Hall ${ }^{\circledR}$ Technology
- High Field, Very High Field and Extra High Field variants
- End-of-line programmable sensor
- Selectable analog ratiometric output
- Programmable sensitivity from ± 20 to $\pm 350 \mathrm{mV} / \mathrm{mT}$
- Measurement range up to 90 mT
- Wideband sensing: DC to 250 kHz
- Very fast response time $(2 \mu s)$
- High linearity down to $\pm 0.2 \%$ full scale
- Very low thermal drift
- Offset drift ($<5 \mathrm{mV}$)
- Sensitivity drift (<1\%)
- Programmable output clamping levels
- Broken wire detection and diagnostics
- AEC-Q100 - Grade 0 Automotive Qualified
- RoHS compliant
- SOIC-8 package
- MSL-3

2. Application Examples

- High Voltage Traction Motor Inverter
- 48V Boost Recuperation Inverter
- DCDC Converter
- Smart Battery Junction Boxes
- Smart Fuse Overcurrent Detection

Figure 1. Typical IMC-Hal/ ${ }^{\circledR}$ Current Sensing Application

3. Description

The MLX91216 is a monolithic Hall-effect sensor utilizing the IMC-Hall ${ }^{\circledR}$ technology. The sensor provides an analog output voltage proportional to the applied magnetic flux density parallel to the IC surface.

The transfer characteristic of the MLX91216 is factory trimmed over temperature, and is programmable (offset, sensitivity, clamping, filtering) during end-of-line customer calibration. The output clamping levels and on-chip filtering are also programmable as a function of application needs. With the 250 kHz bandwidth and fast response time, it is particularly adapted for high speed applications such as inverters and converters where fast response time due to fast switching is required.

In a typical current sensing application, the sensor is used in combination with a U-shaped shield which facilitates the mechanical assembly of the current sensor over traditional ferromagnetic cores. This shield is recommended to be laminated for high bandwidth applications. The MLX91216 can then be mounted over the bus bar and separated from it by the PCB. As the shield does not serve the primary purpose of concentration, it can be made smaller and lighter than ferromagnetic cores without losing signal thanks to the integrated magnetic concentrator (IMC) depicted also in Figure 1. Typical IMC-Hall ${ }^{®}$ Current Sensing Application. As a result, dense power electronics can be achieved enabling system savings and surface mount assembly.

Figure 2. General Block Diagram

Contents

1. Features and Benefits 1
2. Application Examples 1
3. Description 1
4. Ordering Information 3
5. Functional Diagram 4
6. Glossary of Terms 4
7. Pin Definitions and Descriptions 4
8. Absolute Maximum Ratings 5
9. General Electrical Specifications 6
10. Magnetic specification. 7
10.1. High Field version (option code ACH) 7
10.2. Very High Field version (option code ACV). 7
10.3. Extra High Field version (option code ACX). 7
11. Analog output specification 8
11.1. Accuracy specifications 8
11.2. Timing specifications 8
12. Self-diagnostic 9
13. Recommended Application Diagram 9
14. Programmable items 10
15. Standard Information 11
16. ESD Precautions 11
17. Packaging information 12
17.1. SOIC-8 Pinout and Marking 12
17.2. Hall plate position 13
17.3. IMC Position and Sensing Direction 13
18. Contact 14
19. Disclaimer 14

4. Ordering Information

Product	Temperature	Package	Option Code	Packing Form	Typical Sensitivity
MLX91216	L	DC	ACH - 000	RE	$\begin{aligned} & 100 \mathrm{mV} / \mathrm{mT} \\ & \text { (prog: } 50 . .350 \mathrm{mV} / \mathrm{mT} \text {) } \end{aligned}$
MLX91216	L	DC	ACV - 000	RE	$\begin{aligned} & 40 \mathrm{mV} / \mathrm{mT} \\ & \text { (prog: } 30 . .200 \mathrm{mV} / \mathrm{mT} \text {) } \end{aligned}$
MLX91216	L	DC	ACV - 001	RE	$\begin{aligned} & 60 \mathrm{mV} / \mathrm{mT} \\ & \text { (prog: } 30 . .200 \mathrm{mV} / \mathrm{mT} \text {) } \end{aligned}$
MLX91216	L	DC	ACV - 002	RE	$\begin{aligned} & 30 \mathrm{mV} / \mathrm{mT} \\ & \text { (prog: } 30 . .200 \mathrm{mV} / \mathrm{mT} \text {) } \end{aligned}$
MLX91216	L	DC	ACX - 000	RE	$\begin{aligned} & 25 \mathrm{mV} / \mathrm{mT} \\ & \text { (prog: 20..125mV/mT) } \end{aligned}$
MLX91216	L	DC	ACX - 001	RE	$\begin{aligned} & 30 \mathrm{mV} / \mathrm{mT} \\ & \text { (prog: } 20 . .125 \mathrm{mV} / \mathrm{mT} \text {) } \end{aligned}$
MLX91216	L	DC	ACX - 002	RE	$\begin{aligned} & 20 \mathrm{mV} / \mathrm{mT} \\ & \text { (prog: 20..125mV/mT) } \end{aligned}$

Table 1: Available ordering codes.

Legend:

Temperature Code:	L	from $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ ambient temperature
Package Code:	DC	for SOIC8 package, refer to Chapter 17 for detailed drawings
Option Code:	ACH-000 ACV-000 ACV-001 ACV-002 ACX-000 ACX-001 ACX-002	for sensitivity $100 \mathrm{mV} / \mathrm{mT}$; (programmable range: 50-350mV/mT) for sensitivity $40 \mathrm{mV} / \mathrm{mT}$; (programmable range: $30-200 \mathrm{mV} / \mathrm{mT}$) for sensitivity $60 \mathrm{mV} / \mathrm{mT}$; (programmable range: $30-200 \mathrm{mV} / \mathrm{mT}$) for sensitivity $30 \mathrm{mV} / \mathrm{mT}$; (programmable range: $30-200 \mathrm{mV} / \mathrm{mT}$) for sensitivity $25 \mathrm{mV} / \mathrm{mT}$; (programmable range: 20-125mV/mT) for sensitivity $30 \mathrm{mV} / \mathrm{mT}$; (programmable range: 20-125mV/mT) for sensitivity $20 \mathrm{mV} / \mathrm{mT}$; (programmable range: $20-125 \mathrm{mV} / \mathrm{mT}$)
Packing Form:	RE	for Plastic Reel.
Ordering Example:	"MLX91216LDC-ACV-001-RE" MLX91216 IMC-Hall ${ }^{\otimes}$ current sensor in SOIC8 package, temperature range $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. Sensitivity $60 \mathrm{mV} / \mathrm{mT}$. Parts delivered in Plastic Reel.	

5. Functional Diagram

Figure 3: MLX91216 Block Diagram

6. Glossary of Terms

Terms Definition

TC Temperature Coefficient
FS Full Scale, output referred. Corresponds to 2 V excursion around 2.5 V Voa point
T, mT Tesla, milliTesla = units for the magnetic flux density
G Gauss = unit for the magnetic flux density [1mT = 10G]
PTC Programming Through Connector
IMC Integrated Magnetic Concentrator
Table 2: Glossary of Terms

7. Pin Definitions and Descriptions

Pin \#	Name	Type	Description
1	VDEC	Digital	Digital Supply Voltage
2	NC	-	Not Connected
3	GND	Ground	Supply Voltage
4	TEST	Digital	Test and Factory Calibration
5	VDD	Supply	Supply Voltage
6	OUT	Analog	Current Sensor Output
7,8	NC	-	Not Connected

Table 3: Pin definitions and descriptions (MLX91216 is pin-to-pin compatible with MLX91208)

For optimal EMC performance, it is recommended to connect the unused (NC) pins to the Ground.

8. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Positive Supply Voltage (overvoltage)	$V_{D D}$	+10	V
Reverse Voltage Protection	VSrev	-0.3	V
Positive Output Voltage	Vout	+10	V
Output Current	lout	± 70	mA
Reverse Output Voltage	$\mathrm{VO}_{\text {rev }}$	-0.3	V
Reverse Output Current	$1 \mathrm{O}_{\text {rev }}$	-50	mA
Maximum Junction Temperature	Tj, max	-55 to 155	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	TA	-40 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Ts	-55 to +165	${ }^{\circ} \mathrm{C}$
Package Thermal Resistance (junction-to-ambient) θ_{ja} is defined according to JEDEC 1sOp board	$\theta_{\text {ja }}$	174	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD - Human Body Model (Applicable for all pins)	ESDнвм	2	kV
Magnetic Flux Density	$B_{\text {MAX }}$	± 3	T

Table 4: Absolute maximum ratings

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximumrated conditions for extended periods of time may affect device reliability.

9. General Electrical Specifications

Operating Parameters $\mathrm{T}_{\mathrm{A}}=-40$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Nominal Supply Voltage	VDD		4.5	5	5.5	V
Supply Current	Ido	No OUT load LOW_POWER_MODE=01 LOW_POWER_MODE=1		$\begin{gathered} 12.5 \\ 10 \end{gathered}$	$\begin{aligned} & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Impedance	Rout	Vout $=50 \% \mathrm{Vdd}, \mathrm{RL}=10 \mathrm{k} \Omega$		1	5	Ω
Output Capacitive Load	CL	$\begin{aligned} & \text { OUT_MODE=01 } \\ & \text { OUT_MODE=1 } \end{aligned}$	$\begin{gathered} 1 \\ 10 \end{gathered}$		$\begin{aligned} & 10 \\ & 47 \end{aligned}$	$\begin{aligned} & \mathrm{nF} \\ & \mathrm{nF} \end{aligned}$
Output Resistive Load	RL	Output resistive load for high linearity and diagnostic band.	10	25	200	$\mathrm{k} \Omega$
Output Short Circuit Current	Ishort	Output shorted permanent to VDD. Output shorted permanent to GND.		Not Destroyed Not Destroyed		
Linear Output Range	VOLin	pull-down $\geq 10 \mathrm{k} \Omega$	10		90	\%Vdd
Diagnostic Band ${ }^{2}$	DIAG	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}} \leq 200 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \text { DIAG_LEVEL }=0 \\ & \text { DIAG_LEVEL }=1 \end{aligned}$	$\begin{gathered} 0 \\ 96 \end{gathered}$		$\begin{gathered} 4 \\ 100 \end{gathered}$	$\begin{aligned} & \text { \%Vdd } \\ & \% \mathrm{Vdd} \end{aligned}$
BrokenGND Output Level ${ }^{2}$		$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	96		100	\%Vdd
BrokenVDD Output Level ${ }^{2}$		$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	0		4	\%Vdd
Under-voltage detection ${ }^{2}$	VDD_uvd	Detected Voltage (Low to High)	4.0		4.5	V
	VDD_UVH	Hysteresis	0.01		0.2	V
Over-voltage detection 1^{2}	VDD_ovD1 VDD_ovh1	Detected Voltage (Low to High) Hysteresis	6.7 0.37		7.4 0.66	V
Over-voltage detection 2^{2}	VDD_ovD2	Detected Voltage (Low to High)	8.3		9.5	V
	VDD_OVH2	Hysteresis	0.2		0.8	V
Clamped Output Level	Clamp_lo0	CLAMP_LEVEL=0	5	6	7	\%Vdd
	Clamp_hi0	CLAMP_LEVEL=0	92	93	94	\%Vdd
	Clamp_lo1	CLAMP_LEVEL=1	5	6	7	\%Vdd
	Clamp_hi1	CLAMP_LEVEL=1	93	94	95	\%Vdd
	Clamp_lo2	CLAMP_LEVEL=2	7	8	9	\%Vdd
	Clamp_hi2	CLAMP_LEVEL=2	91	92	93	\%Vdd
	Clamp_lo3	CLAMP_LEVEL=3	9	10	11	\%Vdd
	Clamp_hi3	CLAMP_LEVEL=3	89	90	91	\%Vdd

Table 5: General electrical parameters

[^0]
10. Magnetic specification

Operating Parameters $T_{A}=-40$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$, unless otherwise specified.

10.1. High Field version (option code ACH)

Parameter	Symbol	Test Conditions	Min	Tур	Max	Units
Operational Magnetic Field Range	Bop				± 25	mT
Linearity Error (Magnetic)	NL	B within Bop, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			± 0.5	\%FS
Hysteresis - Remanent Field	B_{R}	Measured after $B=$ Bop			± 25	$\mu \mathrm{T}$
Programmable Sensitivity	S	MLX91216LDC-ACH-000	50	100	350	$\mathrm{mV} / \mathrm{mT}$
Sensitivity Programming Resolution	SRes	$B=B o p$		0.1		\%

Table 6: Magnetic specification High Field version

10.2. Very High Field version (option code ACV)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Operational Magnetic Field Range	Bop				± 60	mT
Linearity Error (Magnetic)	NL	B within Bop, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			± 0.5	$\% \mathrm{FS}$
Hysteresis - Remanent Field	BR	Measured after B = Bop			± 60	$\mu \mathrm{~T}$
Programmable Sensitivity		MLX91216LDC-ACV-000	30	40	200	$\mathrm{mV} / \mathrm{mT}$
Sensitivity Programming Resolution	SRES	B $=$ Bop	MLX91216LDC-ACV-001	30	60	200

Table 7: Magnetic specification Very High Field version

10.3. Extra High Field version (option code ACX)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Operational Magnetic Field Range	Bop				± 90	mT
Linearity Error (Magnetic)	NL	B within Bop, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			± 0.5	$\% \mathrm{FS}$
Hysteresis - Remanent Field	BR	Measured after B $=$ Bop			± 90	$\mu \mathrm{~T}$
		MLX91216LDC-ACX-000	20	25	125	
Programmable Sensitivity	S	MLX91216LDC-ACX-001	20	30	125	$\mathrm{mV} / \mathrm{mT}$
Sensitivity Programming Resolution	SRES	B = Bop	20	20	125	

Table 8: Magnetic specification Extra High Field version

11. Analog output specification

11.1. Accuracy specifications

Operating Parameters $T_{A}=-40$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Thermal Offset Drift	$\Delta^{\top} V_{\text {oQ }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to } 125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 150^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \pm 5 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Thermal Sensitivity Drift	$\Delta^{\top} \mathrm{S}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to } 125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 150^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \pm 1.0 \\ & \pm 1.2 \end{aligned}$	$\begin{aligned} & \text { \%S } \\ & \% S \end{aligned}$
RMS Output Noise	$\mathrm{N}_{\text {RMS }}$	Scales with typical sensitivity of Table 1 for given IMC type (HF, VHF, XHF) MLX91216LDC-ACH-000 MLX91216LDC-ACV-000 MLX91216LDC-ACV-002 (NOISE_FILTER 1) MLX91216LDC-ACX-000		$\begin{gathered} 8 \\ 6.5 \\ 4.5 \\ 6.5 \end{gathered}$		$m V_{\text {RMs }}$ $\mathrm{m} V_{\text {RMS }}$ $\mathrm{m} V_{\text {RMS }}$ $\mathrm{m} V_{\text {RMS }}$
Voo Ratiometry	$\Delta^{R} V_{\text {oQ }}$	$V_{D D}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{O Q}=50 \% \mathrm{~V}_{\text {DDx }}$			± 0.4	\%Voa
Sensitivity Ratiometry	$\Delta^{R} S$	$V_{D D}=5 \mathrm{~V} \pm 5 \%, \mathrm{~B}=\mathrm{B}_{\text {OP }}$			± 0.4	\%S
Clamped output accuracy	CLacc				± 1	\%Vdd

Table 9: Accuracy specifications - analog parameters
The accuracy specifications are defined for the factory calibrated sensitivity. The achievable accuracy is dependent on the user's end-of-line calibration. Resolution for offset and offset drift calibration is better than $0.02 \% \mathrm{~V}_{\text {DD }}$. Trimming capability is higher than measurement accuracy. End-user calibration can therefore increase the accuracy of the system.

11.2. Timing specifications

Operating Parameters $\mathrm{T}_{\mathrm{A}}=-40$ to $150^{\circ} \mathrm{C}, \mathrm{Vdd}=5 \mathrm{~V} \pm 10 \%$, unless otherwise specified.

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Refresh rate	$\mathrm{T}_{\text {r }}$	LOW_POWER_MODE=0	0.8	1	2	$\mu \mathrm{s}$
Step Response Time	TR	```C}=10n NOISE_FILTER=0, LOW_POWER_MODE=0 NOISE_FILTER=0, LOW_POWER_MODE=1 NOISE_FILTER=1, LOW_POWER_MODE=0 NOISE_FILTER=1, LOW_POWER_MODE=1 NOISE_FILTER=2, LOW_POWER_MODE=0 NOISE_FILTER=2, LOW_POWER_MODE=1 NOISE_FILTER=3, LOW_POWER_MODE=0 NOISE_FILTER=3, LOW_POWER_MODE=1```		$\begin{gathered} 2 \\ 3 \\ 3 \\ 5 \\ 4 \\ 4 \\ 6 \\ 8 \\ 10 \end{gathered}$	$\begin{gathered} 3 \\ 4 \\ 4 \\ 4 \\ 6 \\ 5 \\ 7 \\ 9 \\ 11 \end{gathered}$	
Power on Delay	Tpod	Vout $=100 \%$ of F.S.			1	ms
Ratiometry Cut-off Frequency	Frat			250		Hz

Table 10: Timing specifications of the high-speed analog output

12. Self-diagnostic

MLX91216 provides several self-diagnostic features, which prevent the IC from providing erroneous output signal in case of internal or external failure modes.

Error	Effect on Output	Remarks
Calibration data CRC Error	DIAG_LEVEL=0 \rightarrow active pull-down to GND DIAG_LEVEL=1 \rightarrow active pull-up to VDD	At power up and in normal mode
Power-On Delay	Pull-down to GND	1ms max followed by settling
Over-voltage Mode 1	Active pull-down to GND	
Over-voltage Mode 2	DIAG_LEVEL=0 \rightarrow active pull-down to GND DIAG_LEVEL $=1 \rightarrow$ active pull-up to VDD	
Under-voltage Mode	DIAG_LEVEL $=0 \rightarrow$ active pull-down to GND DIAG_LEVEL=1 \rightarrow active pull-up to VDD	Valid with enabled ratiometry (Default: RATIOEN $=1$ 1)
Broken OUT	Active pull-down to GND	IC is switched off
Broken GND	Output pulled up to VDD	IC is switched off
Broken VDD	Output pulled down to GND	

Table 11: Description of the self-diagnostic modes in MLX91216

13. Recommended Application Diagram

Figure 4: Application Diagram with external Pull-Down resistance

| Part | Description | Value | Unit |
| :---: | :--- | :---: | :---: | :---: |
| C1 | Supply capacitor, EMI, ESD | 100 | nF |
| C2 | Decoupling, EMI, ESD, OUT_MODE=0 | $1-10$ | nF |
| | Decoupling, EMI, ESD, OUT_MODE=1 | $10-47$ | nF |
| C3 | Decoupling, EMI, ESD | 47 | nF |
| R1 | Pull down resistor | $10-200$ | $\mathrm{k} \Omega$ |

Table 12: Resistor and capacitor values

14. Programmable items

Customers can re-program the parameters described in the table below by using the PTC-04 hardware and the Product Specific Functions (PSF) libraries provided by Melexis. We recommend using the latest version of the PSF and the firmware, with a communication speed of 10kbps (maximum output capacitor of 47nF).
Please contact your sales representative to get access to Melexis SoftDist platform and download the latest software.

Parameter	Bits	Factory Setting	Function
ROUGHGAIN	3	Trimmed	Rough gain trimming
FINEGAIN	10	Trimmed	Fine gain trimming
VOQ	12	Trimmed	Offset trimming
OUT_MODE	1	0	0: low capacitive load (see section 13) 1: high capacitive load (see section 13)
DIAG_LEVEL	1	0	0 : in diagnostic, output is pulled down to GND 1: in diagnostic, output is pulled up to Vdd
LOW_POWER_MODE	1	0	0 : normal mode 1: low power mode with slower response time
CLAMP_LEVEL	2	1	$\begin{aligned} & \text { Select clamping level (\%VDD) } \\ & 0: 6 \% / 93 \% \\ & \text { 1: 6\%/94\%, } \\ & \text { 2: 8\%/92\%, } \\ & \text { 3: 10\%/90\% } \end{aligned}$
NOISE FILTER	2	$0 / 1^{3}$	0: Noise filter: deactivated 1: Noise filter: 120 kHz 2: Noise filter: 60 kHz 3: Noise filter: 15 kHz
CSTID	17	N/A	Customer ID

Table 12: Customer Programmable Items
${ }^{3}$ The Noise Filter parameter is set to 1 for MLX91216LDC-ACV-002 IC version. The Noise Filter is deactivated for all other option codes.

15. Standard Information

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to standards in place in Semiconductor industry.

Reflow Soldering SMD's (Surface Mount Devices)

- IPC/JEDEC J-STD-020

Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)

- EIA/JEDEC JESD22-A113

Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing
(reflow profiles according to table 2)

Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EN60749-20

Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat

- EIA/JEDEC JESD22-B106 and EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Iron Soldering THD's (Through Hole Devices)

- EN60749-15

Resistance to soldering temperature for through-hole mounted devices

Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices)

- EIA/JEDEC JESD22-B102 and EN60749-21

Solderability
For further details about test method references and for compliance verification of selected soldering method for product integration, Melexis recommends reviewing on our web site the General Guidelines soldering recommendation. For all soldering technologies deviating from the one mentioned in above document (regarding peak temperature, temperature gradient, temperature profile etc), additional classification and qualification tests have to be agreed upon with Melexis.

For package technology embedding trim and form post-delivery capability, Melexis recommends to consult the dedicated trim\&form recommendation application note: lead trimming and forming recommendations.

Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/en/quality-environment

16. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

17. Packaging information

NOTE:

1. GATE BURRS SHALL NOT EXCEED 0.15 MM PER END,
2. INTERLEAD MOLD FLASH SHALL NOT EXCEED $0,25 M M$ PER SIDE. 3. ALL DIMENSION EXCLUDING MOLD FLASH AND GATE BURR. 4. LEAD COPLANARITY SHOULD BE 0 TO 0.127 MM MAX.

	A	A1	A2	D	E	H	L	b	C	e	h	α
MIN	1.52	0.10	1.37	4.80	3.81	5.80	0.41	0.35	0.19	1.27	0.25	0.00
NOM	-	-	-	-	-	-	-	-	-		-	-
MAX	1.73	0.25	1.57	4.98	3.99	6.20	1.27	0.49	0.25	BSC	0.50	8.00

Figure 5: SOIC8 - Package Information
17.1. SOIC-8 Pinout and Marking

Package Top Marking	Marking Description	
	Line 1: 91216AC	Product and IC revision
	Line 2: XXXXXX	Wafer Lot Nb
	Line 3: YY	Calendar Year (last 2 digits)
	Line 3: WW	Calendar Week
	Line 3: ZZ	EH = High Field IMC EV = Very High Field IMC EX = Extra High Field IMC

Figure 6: SOIC8-Pinout and marking

17.2. Hall plate position

Figure 7: Hall plate position
17.3. IMC Position and Sensing Direction

Figure 8 IMC position and geometry high field (HF) version

Figure 9 IMC position and geometry very high field (VHF) version

Figure 10 IMC position and geometry extra high field (XHF) version

18. Contact

For the latest version of this document, go to our website at http://www.melexis.com/MLX91216.

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Email : sales_europe@melexis.com
Americas	Email : sales_usa@melexis.com
Asia	Email : sales_asia@melexis.com

19. Disclaimer

The content of this document is believed to be correct and accurate. However, the content of this document is furnished "as is" for informational use only and no representation, nor warranty is provided by Melexis about its accuracy, nor about the results of its implementation. Melexis assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Customer will follow the practices contained in this document under its sole responsibility. This documentation is in fact provided without warranty, term, or condition of any kind, either implied or expressed, including but not limited to warranties of merchantability, satisfactory quality, non-infringement, and fitness for purpose. Melexis, its employees and agents and its affiliates' and their employees and agents will not be responsible for any loss, however arising, from the use of, or reliance on this document. Notwithstanding the foregoing, contractual obligations expressly undertaken in writing by Melexis prevail over this disclaimer.

This document is subject to change without notice, and should not be construed as a commitment by Melexis. Therefore, before placing orders or prior to designing the product into a system, users or any third party should obtain the latest version of the relevant information.
Users or any third party must determine the suitability of the product described in this document for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

This document as well as the product here described may be subject to export control regulations. Be aware that export might require a prior authorization from competent authorities. The product is not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment or avionics application are specifically excluded by Melexis. The product may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of:

1. chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons;
2. civil firearms, including spare parts or ammunition for such arms;
3. defense related products, or other material for military use or for law enforcement;
4. any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

No license nor any other right or interest is granted to any of Melexis' or third party's intellectual property rights.
If this document is marked "restricted" or with similar words, or if in any case the content of this document is to be reasonably understood as being confidential, the recipient of this document shall not communicate, nor disclose to any third party, any part of the document without Melexis' express written consent. The recipient shall take all necessary measures to apply and preserve the confidential character of the document. In particular, the recipient shall (i) hold document in confidence with at least the same degree of care by which it maintains the confidentiality of its own proprietary and confidential information, but no less than reasonable care; (ii) restrict the disclosure of the document solely to its employees, agents, professional advisors and contractors for the purpose for which this document was received, on a strictly need to know basis and providing that such persons to whom the document is disclosed are bound by confidentiality terms substantially similar to those in this disclaimer; (iii) use the document only in connection with the purpose for which this document was received, and reproduce document only to the extent necessary for such purposes; (iv) not use the document for commercial purposes or to the detriment of Melexis or its customers. The confidentiality obligations set forth in this disclaimer will have indefinite duration and in any case they will be effective for no less than 10 years from the receipt of this document.

This disclaimer will be governed by and construed in accordance with Belgian law and any disputes relating to this disclaimer will be subject to the exclusive jurisdiction of the courts of Brussels, Belgium.

The invalidity or ineffectiveness of any of the provisions of this disclaimer does not affect the validity or effectiveness of the other provisions. The previous versions of this document are repealed.

Melexis © - No part of this document may be reproduced without the prior written consent of Melexis. (2022)
IATF 16949 and ISO 14001 Certified

[^0]: ${ }^{1}$ Default Factory Calibration
 ${ }^{2}$ Please refer to section 12 for more information on self-diagnostic modes.

