onsemi

ECOSPARK[®] Ignition IGBT

300 mJ, 400 V, N-Channel Ignition IGBT

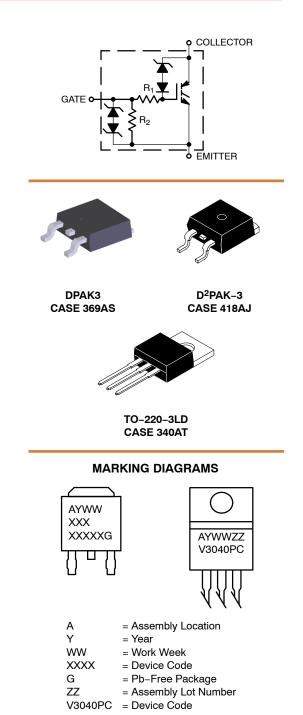
ISL9V3040x3ST-F085C

Features

- SCIS Energy = 300 mJ at $T_J = 25^{\circ}C$
- Logic Level Gate Drive
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Automotive Ignition Coil Driver Circuits
- High Current Ignition System
- Coil on Plug Application


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Value	Unit
BV _{CER}	Collector to Emitter Breakdown Voltage (IC = 1 mA)	400	V
BV _{ECS}	Emitter to Collector Voltage – Reverse Battery Condition (IC = 10 mA)	24	V
E _{SCIS25}	ISCIS = 14.2 A, L = 3.0 mHy, RGE = 1 KΩ, T _C = 25°C (Note 1)	300	mJ
E _{SCIS150}	ISCIS = 10.6 A, L = 3.0 mHy, RGE = 1 KΩ, T _C = 150°C (Note 2)	170	mJ
IC25	Collector Current Continuous at VGE = 4.0 V, $T_C = 25^{\circ}C$	21	A
IC110	Collector Current Continuous at VGE = 4.0 V, $T_C = 110^{\circ}C$	17	A
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
PD	Power Dissipation Total, $T_C = 25^{\circ}C$	150	W
	Power Dissipation Derating, $T_C > 25^{\circ}C$	1	W/°C
T _J , T _{STG}	Operating Junction and Storage Temperature	–55 to +175	°C
TL	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	300	°C
T _{PKG}	Reflow Soldering according to JESD020C	260	°C
ESD	HBM–Electrostatic Discharge Voltage at 100 pF, 1500 Ω	4	kV
	CDM–Electrostatic Discharge Voltage at 1 Ω	2	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Self clamped inductive Switching Energy (ESCIS25) of 300 mJ is based on the test conditions that is starting $T_J = 25^{\circ}$ C, L = 3 mHy, ISCIS = 14.2 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp.

2. Self Clamped inductive Switching Energy (ESCIS150) of 170 mJ is based on the test conditions that is starting $T_J = 150^{\circ}$ C, L = 3mHy, ISCIS = 10.6 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp.

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

THERMAL RESISTANCE RATINGS

Characteristic	Symbol	Мах	Units
Junction-to-Case - Steady State (Drain)		1	°C/W

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min	Тур.	Max.	Units
OFF CHARA	ACTERISTICS						
BV _{CER}	Collector to Emitter Breakdown Voltage	$\begin{split} I_{CE} &= 2 \text{ mA}, \ V_{GE} \ = 0 \text{ V}, \\ R_{GE} &= 1 \text{ k}\Omega, \\ T_J &= -40 \text{ to } 150^\circ\text{C} \end{split}$		370	400	430	V
BV _{CES}	Collector to Emitter Breakdown Voltage	$I_{CE} = 10 \text{ mA}, V_{GE} = 0 \text{ V}, R_{GE} = 0, T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		390	420	450	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	I_{CE} = -75 mA, V _{GE} = 0 V, T _J = 25°C		30	-	-	V
BV _{GES}	Gate to Emitter Breakdown Voltage	$I_{GES} = \pm 2 \text{ mA}$		±12	±14	-	V
ICER	Collector to Emitter Leakage Current	V _{CE} = 175 V	$T_J = 25^{\circ}C$	-	-	25	μA
		$R_{GE} = 1 \ k\Omega$	T _J = 150°C	-	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	V _{EC} = 24 V	T _J = 25°C	-	-	1	mA
			T _J = 150°C	-	-	40	
R ₁	Series Gate Resistance			-	70	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	26K	Ω
ON CHARA	CTERISTICS					-	
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_{CE} = 6 \text{ A}, V_{GE} = 4 \text{ V}, T_{J} = 25^{\circ}\text{C}$		-	1.25	1.65	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 10 A, V_{GE} = 4.5 V, T_{J} = 150°C		-	1.58	1.80	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 15 A, V_{GE} = 4.5 V, T_{J} = 150°C		-	1.90	2.20	V
DYNAMIC C	HARACTERISTICS	•		-			
Q _{G(ON)}	Gate Charge	I_{CE} = 10 A, V_{CE} = 12 V, V_{GE} = 5 V		-	17	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	I _{CE} = 1 mA	$T_J = 25^{\circ}C$	1.3	-	2.2	V
		$V_{CE} = V_{GE}$	T _J = 150°C	0.75	-	1.8	1
V _{GEP}	Gate to Emitter Plateau Voltage	V _{CE} = 12 V, I _{CE} = 10 A		-	3.0	-	V
SWITCHING	CHARACTERISTICS					-	
td _{(ON)R}	Current Turn-On Delay Time-Resistive	$V_{CE} = 14 \text{ V}, \text{ R}_{L} = 1 \Omega,$ $V_{GE} = 5 \text{ V}, \text{ R}_{G} = 470 \Omega,$ $T_{J} = 25^{\circ}\text{C}$		-	0.7	4	μs
t _{rR}	Current Rise Time-Resistive			-	2.1	7	
td _{(OFF)L}	Current Turn-Off Delay Time-Inductive	V_{CE} = 300 V, L = 1 mH, V_{GE} = 5 V, R _G = 470 Ω, I_{CE} = 6.5 A, T _J = 25°C		-	4.8	15	
t _{fL}	Current Fall Time-Inductive			_	2.8	15	1
-	1			I	1	1	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

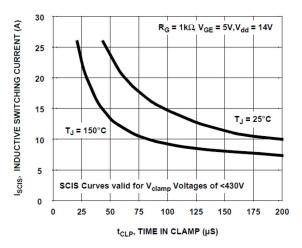


Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp

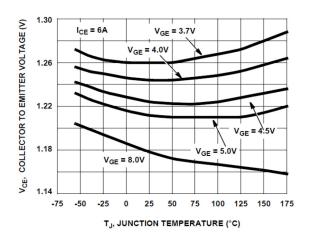


Figure 3. Collector to Emitter On–State Voltage vs. Junction Temperature

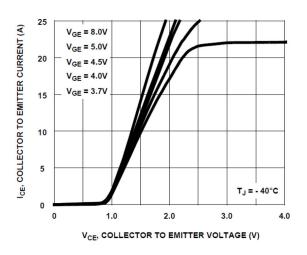


Figure 5. Collector to Emitter On–State Voltage vs. Collector Current

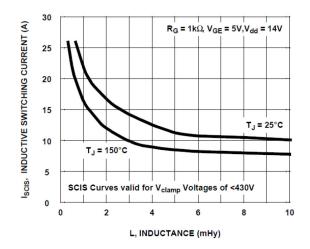


Figure 2. Self Clamped Inductive Switching Current vs. Inductance

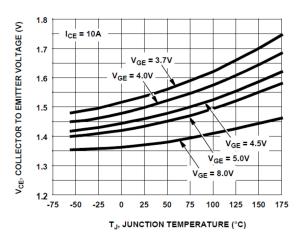


Figure 4. Collector to Emitter On–State Voltage vs. Junction Temperature

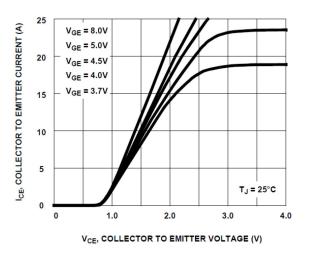


Figure 6. Collector to Emitter On–State Voltage vs. Collector Current

TYPICAL CHARACTERISTICS (continued)

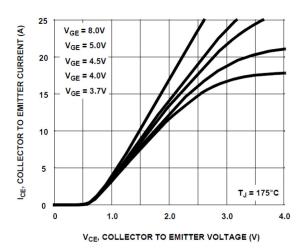
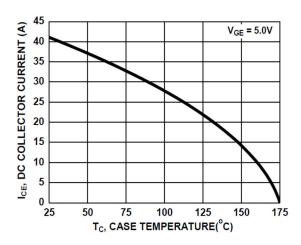



Figure 7. Collector to Emitter On–State Voltage vs. Collector Current

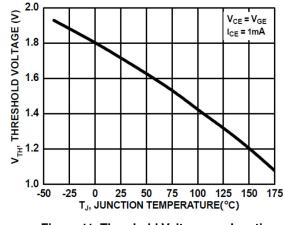
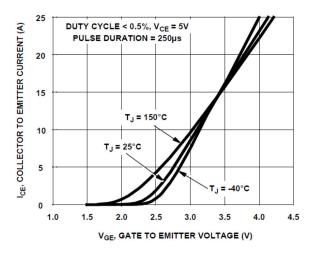



Figure 11. Threshold Voltage vs. Junction Temperature

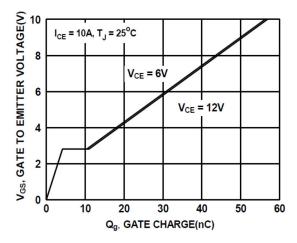
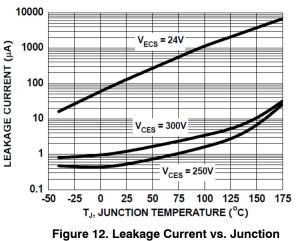



Figure 10. Gate Charge

Temperature

TYPICAL CHARACTERISTICS (continued)

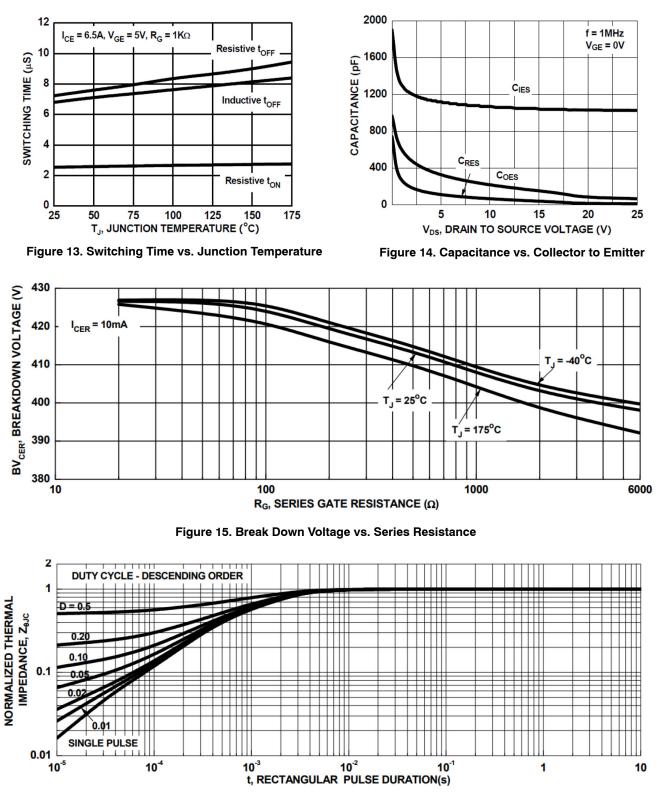


Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

TEST CIRCUIT AND WAVEFORMS

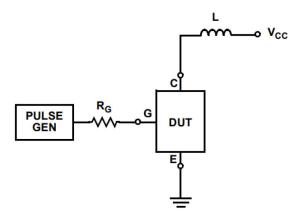


Figure 17. Inductive Switching Test Circuit

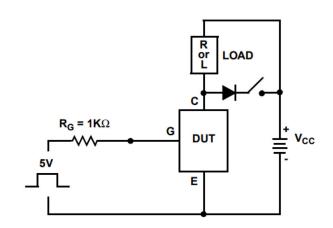


Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

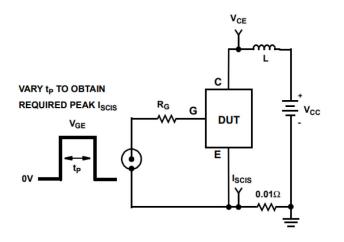


Figure 19. Energy Test Circuit

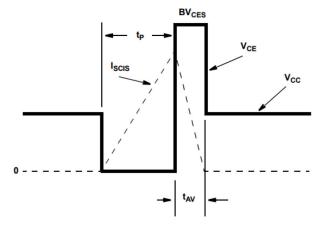
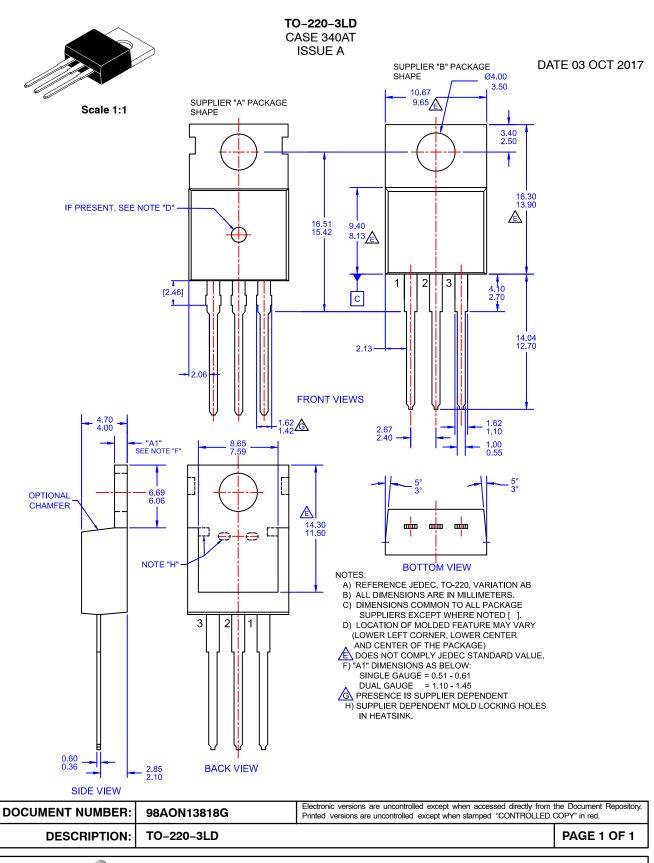


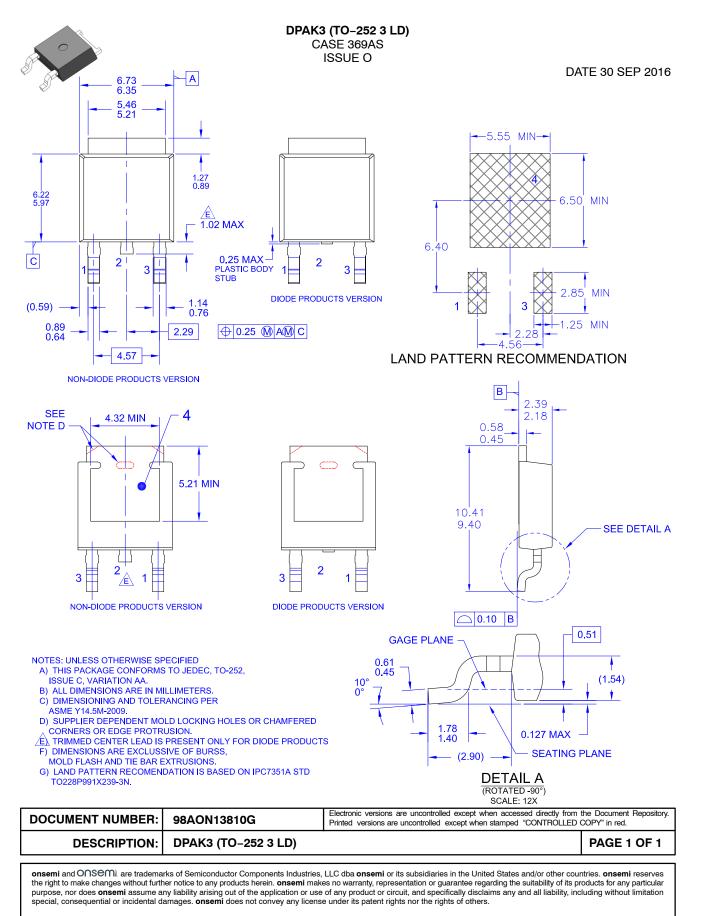
Figure 20. Energy Waveforms


PACKAGE MARKING AND ORDERING INFORMATION

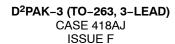
Device	Package	Shipping [†]
ISL9V3040D3ST-F085C	DPAK (Pb–Free)	2500 Units/Tape & Reel
ISL9V3040S3ST-F085C	D2PAK (Pb–Free)	800 Units/Tape & Reel
ISL9V3040P3-F085C	TO220 (Pb-Free)	50 Units/Tube

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

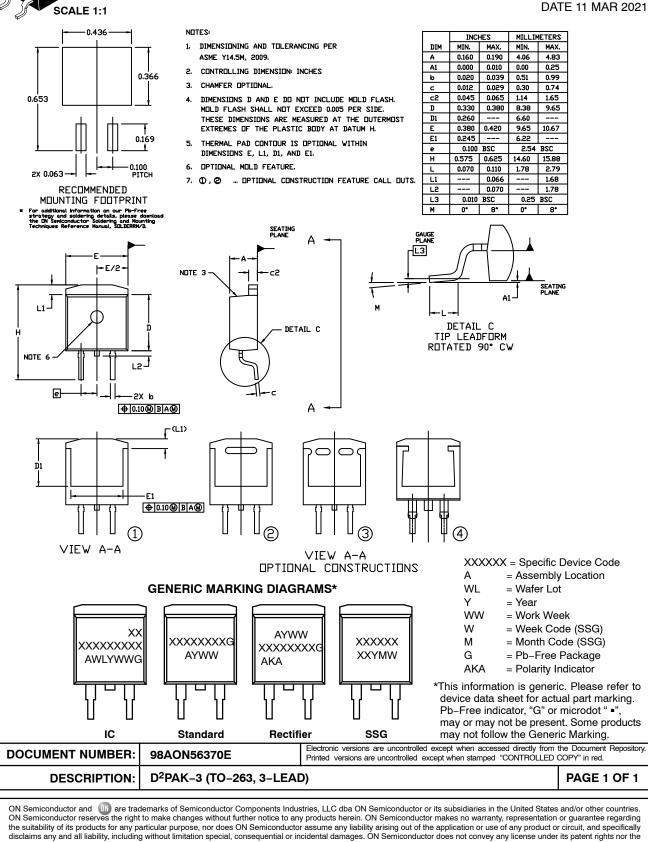
ECOSPARK is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.


MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS





MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

© Semiconductor Components Industries, LLC, 2018

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative