ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor® ISL9V5036P3-F085

EcoSPARK® 500mJ, 360V, N-Channel Ignition IGBT

General Description

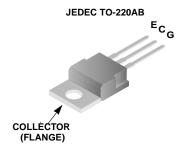
The ISL9V5036P3_F085 is the next generation IGBT that offer outstanding SCIS capability in the TO-220 plastic package. This device is intended for use in automotive ignition circuit, specifically as coil driver. Internal diode provide voltage clamping without the need for external component.

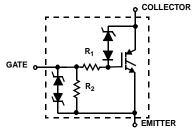
EcoSPARK® devices can be custom made to specific clamp voltages. Contact your nearest ON Semiconductor sales office for more information.

Formerly Developmental Type 49443

Applications

- · Automotive Ignition Coil Driver Circuits
- · Coil-On Plug Applications


Features


- Industry Standard TO-220 package
- SCIS Energy = 500mJ at T_J = 25°C
- Logic Level Gate Drive
- Qualified to AEC Q101
- · RoHS Compliant

Package

Symbol

Device Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	390	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10 mA)	24	V
E _{SCIS25}	At Starting $T_J = 25^{\circ}C$, $I_{SCIS} = 38.5A$, $L = 670 \mu Hy$	500	mJ
E _{SCIS150}	At Starting $T_J = 150$ °C, $I_{SCIS} = 30$ A, $L = 670 \mu$ Hy	300	mJ
I _{C25}	Collector Current Continuous, At T _C = 25°C, See Fig 9	46	Α
I _{C110}	Collector Current Continuous, At T _C = 110°C, See Fig 9	31	Α
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
P _D	Power Dissipation Total T _C = 25°C	250	W
	Power Dissipation Derating T _C > 25°C	1.67	W/°C
TJ	Operating Junction Temperature Range	-40 to 175	°C
T _{STG}	Storage Junction Temperature Range	-40 to 175	°C
TL	Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)	300	°C
T _{pkg}	Max Lead Temp for Soldering (Package Body for 10s)	260	°C
ESD	Electrostatic Discharge Voltage at 100pF, 1500Ω	4	kV

Package	Marking	and	Ordering	Inf	formation
---------	---------	-----	----------	-----	-----------

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
V5036P	ISL9V5036P3-F085	TO-220AB	Tube	N/A	50

Test Conditions

Min

Тур

Max

Units

Electrical Characteristics $T_A = 25$ °C unless otherwise noted

Parameter

BV _{CER}	Collector to Emitter Breakdown Voltage	ige $I_C = 2mA$, $V_{GE} = 0$, $R_G = 1KΩ$, See Fig. 15		330	360	390	V
		$T_J = -40 \text{ to } 150^\circ$	С				
BV _{CES}	Collector to Emitter Breakdown Voltage	$I_C = 10$ mA, V_{GE} $R_G = 0$, See Fig $T_J = -40$ to 150°	g. 15	360	390	420	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	$I_C = -75$ mA, V_{GE} $T_C = 25$ °C	= 0V,	30	-	-	V
BV _{GES}	Gate to Emitter Breakdown Voltage	$I_{GES} = \pm 2mA$		±12	±14	-	V
I _{CER}	Collector to Emitter Leakage Current		$T_C = 25^{\circ}C$	-	-	25	μΑ
		$R_G = 1KΩ$, See Fig. 11	T _C = 150°C	-	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	$V_{EC} = 24V$, See	$T_C = 25^{\circ}C$	-	-	1	m/
		Fig. 11	$T_C = 150$ °C	-	-	40	m/
R ₁	Series Gate Resistance			-	75	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	30K	Ω

On State Characteristics

Symbol

V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_C = 10A,$ $V_{GE} = 4.0V$	T _C = 25°C, See Fig. 4	-	1.17	1.60	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_C = 15A,$ $V_{GE} = 4.5V$	T _C = 150°C	-	1.50	1.80	V

Dynamic Characteristics

$Q_{G(ON)}$	Gate Charge	$I_C = 10A$, $V_{CE} = V_{GE} = 5V$, See		-	32	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	$I_C = 1.0 \text{mA},$	$T_C = 25^{\circ}C$	1.3	-	2.2	V
		V _{CE} = V _{GE,} See Fig. 10	T _C = 150°C	0.75	-	1.8	V
V _{GEP}	Gate to Emitter Plateau Voltage	$I_C = 10A$,	$V_{CF} = 12V$	-	3.0	-	V

Switching Characteristics

t _{d(ON)R}	Current Turn-On Delay Time-Resistive	$V_{CE} = 14V, R_{L} = 1\Omega,$	-	0.7	4	μs
t _{rR}	Current Rise Time-Resistive	V_{GE} = 5V, R_G = 1K Ω T_J = 25°C, See Fig. 12	-	2.1	7	μs
t _{d(OFF)L}	Current Turn-Off Delay Time-Inductive	$V_{CE} = 300V, L = 2mH,$	-	10.8	15	μs
t _{fL}	Current Fall Time-Inductive	V_{GE} = 5V, R_G = 1K Ω T_J = 25°C, See Fig. 12	-	2.8	15	μs
SCIS	Self Clamped Inductive Switching	T_J = 25°C, L = 670 μH, R_G = 1KΩ, V_{GE} = 5V, See Fig. 1 & 2	-	-	500	mJ

Thermal Characteristics

			0.0	00/11/
R _{0JC} Thermal Resistance Junction-Case	-	-	0.6	°C/W

Typical Characteristics

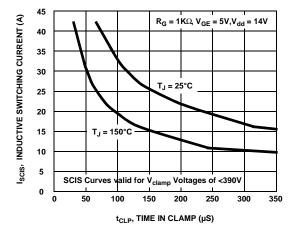


Figure 1. Self Clamped Inductive Switching Current vs Time in Clamp

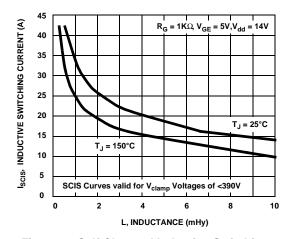


Figure 2. Self Clamped Inductive Switching Current vs Inductance

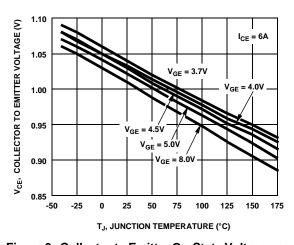


Figure 3. Collector to Emitter On-State Voltage vs Junction Temperature

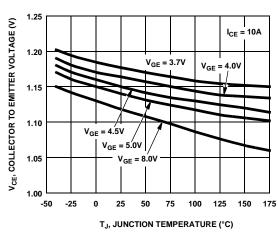


Figure 4.Collector to Emitter On-State Voltage vs
Junction Temperature

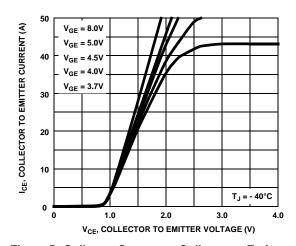


Figure 5. Collector Current vs Collector to Emitter On-State Voltage

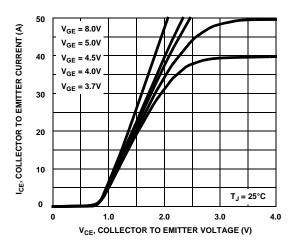


Figure 6. Collector Current vs Collector to Emitter On-State Voltage

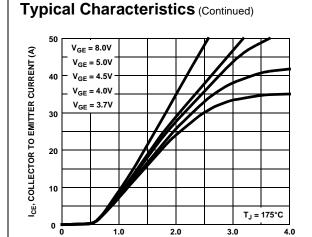


Figure 7. Collector to Emitter On-State Voltage vs Collector Current

V_{CE}, COLLECTOR TO EMITTER VOLTAGE (V)

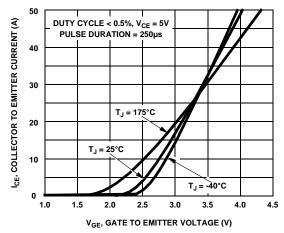


Figure 8. Transfer Characteristics

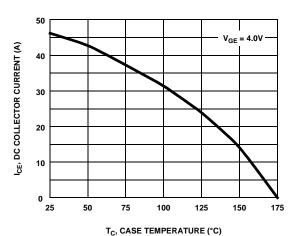


Figure 9. DC Collector Current vs Case Temperature

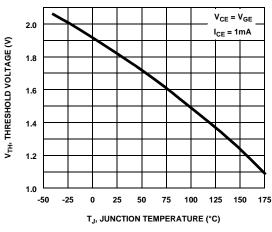


Figure 10. Threshold Voltage vs Junction Temperature

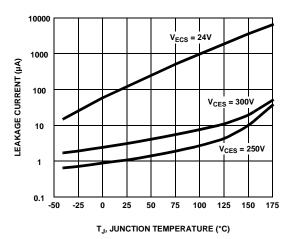


Figure 11. Leakage Current vs Junction Temperature

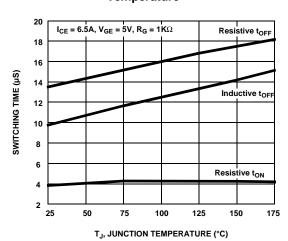
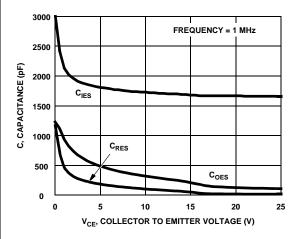



Figure 12. Switching Time vs Junction Temperature

Typical Characteristics (Continued)

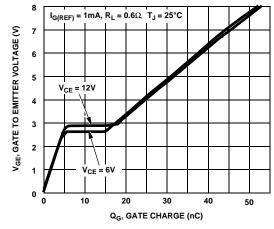


Figure 13. Capacitance vs Collector to Emitter Voltage

Figure 14. Gate Charge

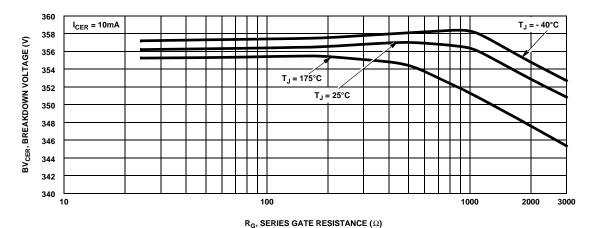


Figure 15. Breakdown Voltage vs Series Gate Resistance

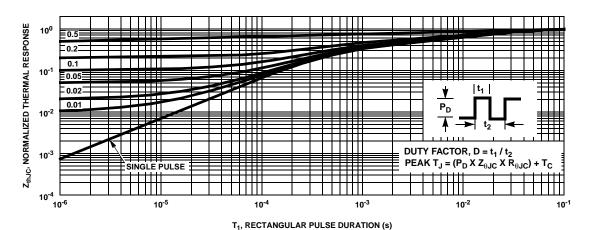


Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

Test Circuits and Waveforms

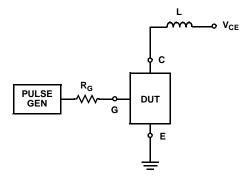


Figure 17. Inductive Switching Test Circuit

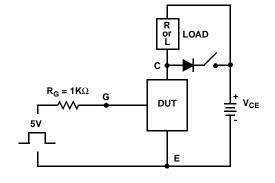


Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

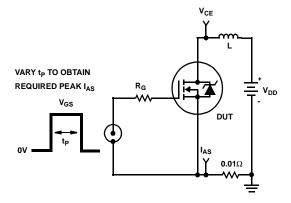


Figure 19. Energy Test Circuit

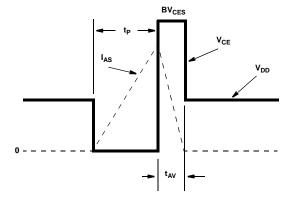


Figure 20. Energy Waveforms

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative