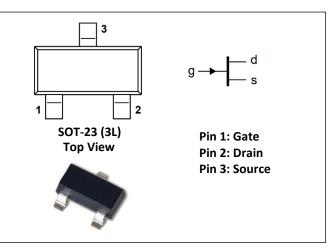


Improved Standard Products[®]

High Gain, Single N-Channel JFET Amplifier

General Purpose, Low-Noise, Low-Cost, Single N-Channel JFET, Replacement for the BF510


Absolute Maximum Ratings				
@ 25 °C (unless otherwise stated)				
Maximum Temperatures				
Storage Temperature	-65 to +150°C			
Junction Operating Temperature	-55 to +150°C			
Maximum Power Dissipation				
Continuous Power Dissipation @ +25°C	350mW			
Maximum Currents				
Gate Forward Current	$I_{G(F)} = 10 \text{mA}$			
Maximum Voltages				
Gate to Source	$V_{GSS} = 30V$			
Gate to Drain	$V_{GDS} = 30V$			

- Low Cutoff Voltage: <2.5V
- High Input Impedance •
- Very Low Noise ٠
- High Gain: AV = 80 @ 20 µA
- Reverse Gate to Source and Drain Voltage ≥ -30V

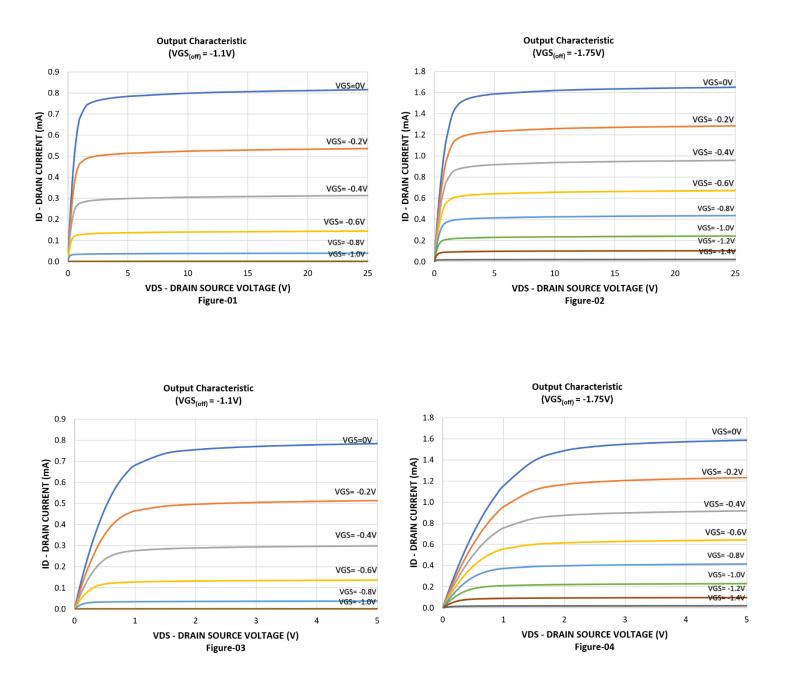
Benefits

- Low Cost
- Excellent Low Power Supply Operation
- Power Supply: Down to 2.5V
- Low Signal Loss/System Error
- High System Sensitivity
- High Quality Low-Level Signal

Applications

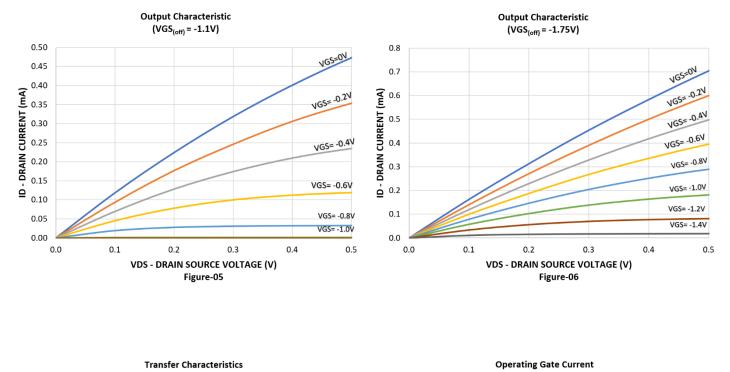
- High-Gain, Low Noise Amplifiers
- Low-Current, Low-Voltage
- **Battery-Powered Amplifiers** •
- Infrared Detector Amplifiers
- Ultra-High Input Impedance Pre-Amplifiers

Description

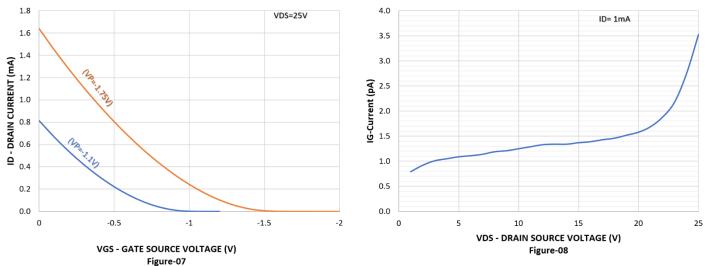

supplies. The LSBF510 is excellent for battery powered

The LSBF510 is a low-cost N-Channel JFET. Features include equipment and low current amplifiers. The TO-236 (SOT-23) low leakage, very low noise, low cutoff voltage (V_{GS(off)} ≤ 2.5V) package provides surface-mount capability. The LSBF510 is and high Gain (Av = 80 V/V) for use with low-level power available in tape-and-reel for automated assembly and in die form for automated assembly.

Electrical Characteristics @ 25 °C (unless otherwise stated)

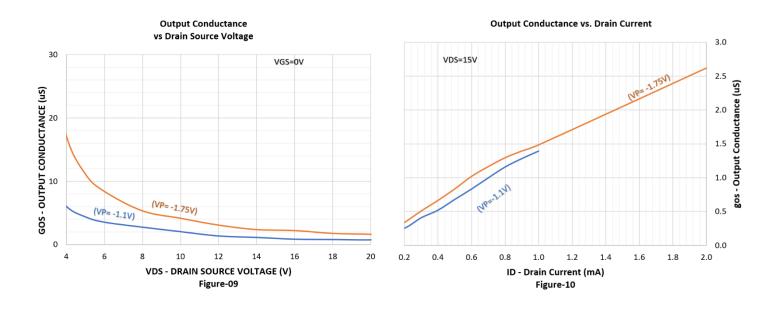

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-30			V	$I_G = -1\mu A$, $V_{DS} = 0.0V$
V _{GS(off)}	Gate to Source Cutoff Voltage	-0.3		-2.5		$V_{DS} = 15V, I_D = 10nA$
IDSS	Drain to Source Saturation Current ²	0.2		3.0	mA	$V_{DS} = 15V, V_{GS} = 0.0V$
I _{GSS}	Gate Reverse Current			-200		$V_{GS} = -20V, V_{DS} = 0.0V$
lg	Gate Operating Current		-2		pА	$V_{DG} = 10V, I_D = 0.1mA$
I _{D(off)}	Drain Cutoff Current		2			$V_{DS} = 15V, V_{GS} = 5.0V$
g fs	Forward Transconductance	0.5			mS	$V_{DS} = 15V, V_{GS} = 0.0V, f = 1kHz$
Ciss	Input Capacitance			4.5	pF	$V_{DS} = 15V, V_{GS} = 0.0V, f = 1MHz$
Crss	Reverse Transfer Capacitance		1.3			- , ,
en	Noise Voltage		3.0		nV/√Hz	$V_{DS} = 10V, I_D = 2mA, f = 1kHz$

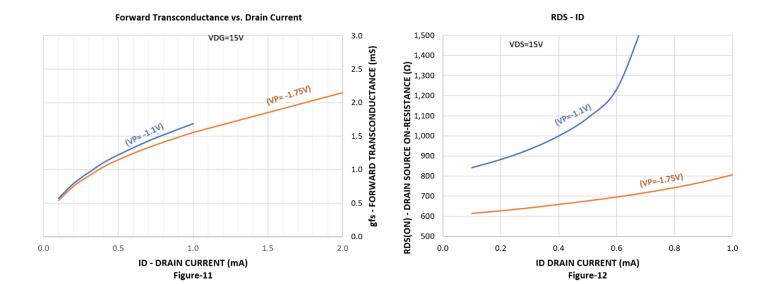
High Gain, Single N-Channel JFET Amplifier



Typical Characteristics

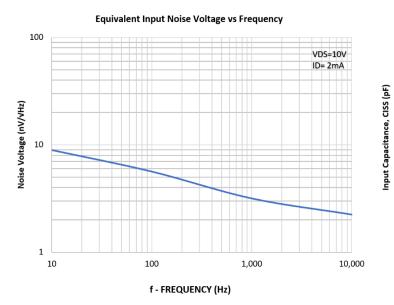
High Gain, Single N-Channel JFET Amplifier

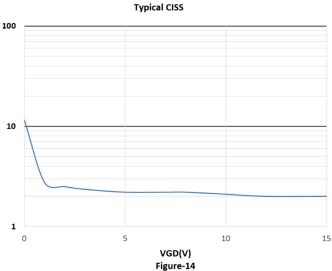

Typical Characteristics Continued

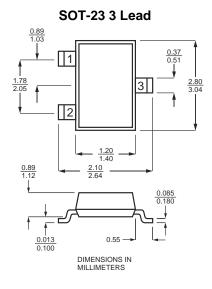


LSBF510

High Gain, Single N-Channel JFET Amplifier


Typical Characteristics Continued




High Gain, Single N-Channel JFET Amplifier

Package Dimensions

Ordering Information

STANDARD PART CALL-OUT
LSBF510 SOT-23 3L RoHS
CUSTOM PART CALL-OUT
(CUSTOM PARTS INCLUDE SEL + 4 DIGIT NUMERIC CODE)
LSBF510 SOT-23 3L RoHS SELXXXX

Notes

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.

- Absolute maximum ratings are limiting values above which serviceability may be impared.
 Pulse Test: PW ≤ 300µs, Duty Cycle ≤ 3%
 All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only.
 When ordering include the full Linear Systems part number and package type. Linear Systems creates custom parts on a case by case basis. To learn whether Linear Control of the device specifications to sales@linearsystems.com. One of our control of the device specifications to sales@linearsystems.com. One of our control of the device specifications to sales@linearsystems.com. Systems can meet your requirements, please send your drawing along with a detailed description of the device specifications to sales@linearsystems.com. One of our qualified representatives will contact you.
- 5. All standard parts are RoHS compliant. Contact the factory for availability of non-RoHS parts.
- Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of 6. patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.