National Semiconductor is now part of

 Texas Instruments.
Search http://www.ti.com/ for the latest technical

 information and details on our current products and services.
Low Voltage LVDS Quad CMOS Differential Line Receiver
 General Description

The DS90LV032A is a quad differential line receiver designed for applications requiring low power dissipation and high data rates.
The DS90LV032A accepts low voltage differential input signals and translates them to 3 V CMOS output levels. The receiver supports a TRI-STATE function that may be used to multiplex outputs.
The DS90LV032A and companion LVDS line driver (DS90LV031A) provide a new alternative to high power pseudo-ECL devices for high speed point to point interface applications.
In addition, the DS90LV032A provides power-off high impedance LVDS inputs. This feature assures minimal loading effect on the LVDS bus lines when VCC is not present.

Features

- High impedance LVDS inputs with power-off
- Accepts small swing (330 mV) differential signal levels.
- Low power dissipation.
- Low differential skew.
- Low chip to chip skew
- +85C thru -55C operating temperature range
- Pin compatible with DS90C032A and DS26C32A.
- Compatible with ANSI/TIA/EIA-644
- Typical Rise/Fall time is 350 ps

CONTROLLING DOCUMENT:
DS90LV032AW-QML 5962-9865201QFA
DS90LV032AWGQML 5962-9865201QXA

(Absolute Maximum Ratings)
 (Note 1)

```
Supply Voltage (Vcc)
Input Voltage (RIN+, RIN-)
Enable Input Voltage (EN, EN*)
Output Voltage (ROUT)
Storage Temperature Range (Tstg)
Lead Temperature
    Soldering 4 seconds
Maximum Package Power Dissipation @ +25C
    (Note 2)
        1 6 ~ P I N ~ C E R P A K ~ ( W ~ P k g ) ~ 8 4 5 m W ~
        1 6 ~ P I N ~ C E R A M I C ~ S O I C ~ ( W G ~ P k g ) ~ 8 4 5 m W ~
Thermal Resistance. (Theta JA)
        16 PIN CERPAK (W Pkg) 148 C/W
        16 PIN CERPAK (W Pkg)
Thermal Resistance. (Theta JC)
    16 PIN CERPAK (W Pkg)
    16 PIN CERPAK (W Pkg)
ESD Rating.
Maximum Junction Temperature
```

-0.3 to +4V

```
-0.3 to +4V
-0.3 to 3.9V
-0.3 to 3.9V
-0.3 to (Vcc+0.3V)
-0.3 to (Vcc+0.3V)
-0.3 to (Vcc+0.3V)
-0.3 to (Vcc+0.3V)
-65C to + 150C
-65C to + 150C
260 C
260 C
148 C/W
148 C/W
21 C/W
21 C/W
21 C/W
```

21 C/W

```
```

845mW

```
845mW
4500 Volts.
4500 Volts.
+150C
```

+150C

```

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Derate (W \& WG Pkgs) @ \(6.8 \mathrm{~mW} / \mathrm{C}\) above +25C.

\section*{Recommended Operating Conditions}
```

Operating Voltage (Vcc)
Operating Temperature Range (Ta)
Receiver Input Voltage

```
3.15 V to 3.45 V
3.15 V to 3.45 V
-55 C to +85 C
GND to 3.0 V

\section*{Electrical Characteristics}

\section*{DC PARAMETERS}
(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Over supply voltage range of 3.15 V to 3.45 V and operating temperature of -55 C to +85 C unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & NOTES & PINNAME & MIN & MAX & UNIT & SUBGROUPS \\
\hline VTL & Differential Input Low Threshold & \(\mathrm{Vcm}=+1.2 \mathrm{~V}\) & 1 & \[
\begin{aligned}
& \text { RIN+, } \\
& \text { RIN- }
\end{aligned}
\] & -100 & & mV & \[
\begin{array}{ll}
1,2, \\
3
\end{array}
\] \\
\hline VTH & Differential Input High Threshold & \(\mathrm{Vcm}=+1.2 \mathrm{~V}\) & 1 & \[
\begin{aligned}
& \text { RIN+, } \\
& \text { RIN- }
\end{aligned}
\] & & 100 & mV & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline VCMR & Common Mode Voltage Range & VID \(=200 \mathrm{mV}\) peak to peak & 1, 4 & \[
\begin{aligned}
& \text { RIN+, } \\
& \text { RIN- }
\end{aligned}
\] & 0.1 & 2.3 & V & \[
\begin{array}{ll}
1,2, \\
3
\end{array}
\] \\
\hline \multirow[t]{2}{*}{IIN} & \multirow[t]{2}{*}{Input Current} & \(\mathrm{Vcc}=3.45 \mathrm{~V}\) or \(0 \mathrm{~V}, \mathrm{Vin}=2.8 \mathrm{~V}\) or 0 V & & \[
\begin{aligned}
& \text { RIN+, } \\
& \text { RIN- }
\end{aligned}
\] & & \(\pm 10\) & uA & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline & & \(\mathrm{Vcc}=0 \mathrm{~V}, \mathrm{Vin}=3.45 \mathrm{~V}\) & & \[
\begin{aligned}
& \text { RIN+, } \\
& \text { RIN- }
\end{aligned}
\] & & \(\pm 20\) & uA & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{VOH} & \multirow[t]{2}{*}{Output High Voltage} & Ioh \(=-0.4 \mathrm{~mA}, \mathrm{Vid}=200 \mathrm{mV}\) & & ROUT & 2.7 & & V & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline & & Ioh \(=-0.4 \mathrm{~mA}\), Inputs Open & & ROUT & 2.7 & & V & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline VOL & Output Low Voltage & Iol \(=2 \mathrm{~mA}, \mathrm{Vid}=-200 \mathrm{mV}\) & & ROUT & & 0.25 & V & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline IOS & Output Short Circuit Current & Enabled, Vout \(=0 \mathrm{~V}\) & 5 & ROUT & -15 & -120 & mA & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline IOZ & Output TRI-STATE Current & Disabled, Vout \(=0 \mathrm{~V}\) or Vcc & & ROUT & & \(\pm 10\) & uA & \[
\begin{array}{ll}
1, & 2, \\
3
\end{array}
\] \\
\hline VIH & Input High Voltage & & 6 & EN, EN* & 2.0 & Vcc & V & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline VIL & Input Low Voltage & & 6 & EN, EN* & GND & 0.8 & V & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline II & Input Current & ```
Vin = Vcc or OV, Other Input = Vcc or
GND
``` & & EN, EN* & & \(\pm 10\) & uA & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline VCL & Input Clamp Voltage & Icl \(=-18 \mathrm{~mA}\) & & EN, EN* & & -1.5 & V & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Icc} & \multirow[t]{2}{*}{No Load Supply Current Receivers Enabled} & EN, EN* = Vcc or GND, Inputs Open & & Vcc & & 15 & mA & \[
\begin{array}{ll}
1, & 2, \\
3
\end{array}
\] \\
\hline & & EN, EN* \(=2.4\) or 0.5 , Inputs Open & & Vcc & & 15 & mA & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline IccZ & No Load Supply Current Receivers Disabled & EN = GND, EN* = Vcc , Inputs Open & & Vcc & & 5 & mA & \[
\begin{aligned}
& 1,2, \\
& 3
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Electrical Characteristics}

\section*{AC PARAMETERS}
(The following conditions apply to all the following parameters, unless otherwise specified.)
\(\mathrm{AC}: \quad \mathrm{VCC}=3.15 / 3.30 / 3.45 \mathrm{~V}, \mathrm{CL}=20 \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & CONDITIONS & NOTES & \[
\begin{aligned}
& \text { PIN- } \\
& \text { NAME }
\end{aligned}
\] & MIN & MAX & UNIT & \[
\begin{aligned}
& \text { SUB- } \\
& \text { GROUPS }
\end{aligned}
\] \\
\hline tPHLD & \begin{tabular}{l}
Differential \\
Propagation Delay High to Low
\end{tabular} & \[
\begin{aligned}
& \text { Vid }=200 \mathrm{mV}, \text { Input pulse }=1.1 \mathrm{~V} \text { to } \\
& 1.3 \mathrm{~V}, \mathrm{Vin}=1.2 \mathrm{~V} \text { (0 differential) to } \\
& \text { Vout }=1 / 2 \mathrm{Vcc}
\end{aligned}
\] & & & 0.5 & 3.5 & ns & \[
\begin{array}{ll}
9, & 10, \\
11
\end{array}
\] \\
\hline tPLHD & \begin{tabular}{l}
Differential \\
Propagation Delay Low to High
\end{tabular} & \[
\begin{aligned}
& \text { Vid }=200 \mathrm{mV} \text {, Input pulse }=1.1 \mathrm{~V} \text { to } \\
& 1.3 \mathrm{~V}, \mathrm{Vin}=1.2 \mathrm{~V} \text { (0V differential) to } \\
& \text { Vout }=1 / 2 \mathrm{Vcc}
\end{aligned}
\] & & & 0.5 & 3.5 & ns & \[
\begin{array}{ll}
\hline 9, & 10, \\
11 &
\end{array}
\] \\
\hline tSKD & \[
\begin{aligned}
& \text { Differential Skew } \\
& \text { |tPHLD-tPLHD| }
\end{aligned}
\] & \(\mathrm{CL}=20 \mathrm{pF}, \mathrm{Vid}=200 \mathrm{mV}\) & & & & 1.5 & ns & \[
\begin{aligned}
& 9,10, \\
& 11
\end{aligned}
\] \\
\hline tSK1 & Channel to Channel Skew & \(\mathrm{CL}=20 \mathrm{pF}, \mathrm{Vid}=200 \mathrm{mV}\) & 2 & & & 1.75 & ns & \[
\begin{array}{ll}
9, & 10, \\
11 &
\end{array}
\] \\
\hline tSK2 & Chip to Chip Skew & \(\mathrm{CL}=20 \mathrm{pF}, \mathrm{Vid}=200 \mathrm{mV}\) & 3 & & & 3.0 & ns & \[
\begin{array}{ll}
9, & 10, \\
11 &
\end{array}
\] \\
\hline tPLZ & ```
Disable Time Low
to Z
``` & ```
Input pulse = 0V to 3.0V, Vin = 1.5V,
Vout = Vol+0.5V, RL= 1K Ohm.
``` & & & & 12 & ns & \[
\begin{array}{ll}
9, & 10, \\
11 &
\end{array}
\] \\
\hline tPHZ & Disable Time High to Z & ```
Input pulse = 0V to 3.0V, Vin = 1.5V,
Vout = Voh-0.5V, RL = 1K Ohm.
``` & & & & 12 & ns & \[
\begin{aligned}
& 9,10, \\
& 11
\end{aligned}
\] \\
\hline tPZH & Enable Time Z to High & Input pulse \(=0 \mathrm{~V}\) to 3.0 V , \(\mathrm{Vin}=1.5 \mathrm{~V}\), Vout \(=50 \%, \mathrm{RL}=1 \mathrm{~K}\) Ohm. & & & & 20 & ns & \[
\begin{array}{ll}
\hline 9, & 10, \\
11 &
\end{array}
\] \\
\hline tPZL & Enable Time Z to Low & Input pulse \(=0 \mathrm{~V}\) to 3.0 V , \(\mathrm{Vin}=1.5 \mathrm{~V}\), Vout \(=50 \%\), RL \(=1 \mathrm{~K}\) Ohm. & & & & 20 & ns & \[
\begin{array}{ll}
9, & 10, \\
11
\end{array}
\] \\
\hline
\end{tabular}

Note 1: Tested during VOH/VOL tests by applying appropriate voltage levels to the input pins of the device under test.
Note 2: Channel to Channel Skew is defined as the difference between the propagation delay of one channel and that of the others on the same chip with any event on the inputs.
Note 3: Chip to Chip Skew is defined as the difference between the minimum and maximum specified differential propagation delays.
Note 4: The VCMR range is reduced for larger input differential voltage (VID). Example: If VID \(=400 \mathrm{mV}\), the VCMR is 0.2 V to 2.2 V . A VID up to Vcc- 0 V may be applied to the Rin+/Rin- inputs with the Common-Mode voltage set to Vcc/2.
Note 5: Output short circuit current (Ios) is specified as magnitude only, minus sign indicates direction of current. Only one output should be shorted at a time, do not exceed maximum junction temperature.
Note 6: Tested during IOZ tests by applying appropriate threshold voltage levels to the EN and EN* pins.

\section*{Graphics and Diagrams}
\begin{tabular}{l|l}
\hline GRAPHICS\# & \\
DESCRIPTION \\
\hline W16ARL & CERPACK (W), 16 LEAD (P/P DWG) \\
\hline WG16ARC & CERAMIC SOIC (WG), 16 LEAD (P/P DWG) \\
\hline
\end{tabular}

See attached graphics following this page.



\section*{Revision History}
\begin{tabular}{l|l|l|l|l}
\hline Rev & ECN \# & Rel Date & Originator & Changes \\
\hline 0A0 & M0003631 & \(08 / 16 / 02\) & Mike Fitzgerald & Initial MDS Release \\
\hline 0B0 & M0004035 & \(08 / 15 / 03\) & Rose Malone & \begin{tabular}{l} 
Update MDS: MNDS90LV032A-X, Rev. OA0 to \\
MNDS90LV031A-X, Rev. 0B0. Added to Main Table NS Part \\
Number DS90LV032AW-MLS. Moved reference to SMD number \\
from Main Table to Features Section.
\end{tabular} \\
\hline 0 C0 & M0004184 & \(11 / 10 / 03\) & Rose Malone & \begin{tabular}{l} 
Update MDS: MNDS90LV032A-X, Rev. 0B0 to 0C0. MDS \\
enhancements: Additional verbage to the general \\
discription, Main Table and Added new bullet to the \\
Features Section.
\end{tabular} \\
\hline 0D0 & M0004345 & \(11 / 10 / 03\) & Rose Malone & \begin{tabular}{l} 
Update MDS: MNDS90LV032A-X, Rev. 0C0 to \\
MNDS90LV032A-X, Rev. 0D0. Updated Features Section \\
Typical Rise/Fall time.
\end{tabular} \\
\hline
\end{tabular}```

