National Semiconductor is now part of

 Texas Instruments.
Search http://www.ti.com/ for the latest technical

 information and details on our current products and services.
Ultrasound Transmit/Receive Switch

General Description

The LM96530 is an eight-channel monolithic high-voltage, high-speed T/R (Transmit/Receive) switch for multi-channel medical ultrasound applications. It is well-suited for use with National's LM965XX series chipset which offers a complete medical ultrasound solution targeted towards low-power, portable systems.
The LM96530 contains eight high-voltage T/R switches with integrated clamping diodes. This chip protects the inputs of the receive channel's LNA (Low Noise Amplifier) from the high-voltage pulses of the transmit channel. Advanced features include a diode bridge with internal current sources that are programmable via an external resistor. Low-power operation is enabled via per-channel-selectable switching.
National Semiconductor also offers a development package for sale which includes a driver hardware and software package with a graphical user interface for configuration and monitoring.

Applications

- Ultrasound Imaging

Features

■ 8-channel high-voltage receive side switches without charge-injection

- Can be used for receive protection and/or receive multiplexing with $\mathrm{SP} I^{\text {TM }}$ compatible bus control
- Channel bandwidth supports 1 MHz to 20 MHz transducers
- Input accepts pulses and continuous-wave signals within $\pm 60 \mathrm{~V}$
- Integrated output clamping diodes limit output to $\pm 0.7 \mathrm{~V}$
- Low harmonic distortion HD2 at -75 dBc at 5 MHz
- Continuous-wave operation
- Soft-switcher based on a diode bridge architecture yielding better noise performance and faster turn-on and off times than competing T-gate switch architectures
- 2.5 V to 3.3 V CMOS SPITM compatible logic interface with daisy chain capability
- Bias current source $\left(\mathrm{I}_{\mathrm{S}}\right)$ can be scaled between 0 and 8 mA via an external resistor

Key Specifications

Input voltage Output voltage clamp $\left(I_{\mathrm{S}}=1 \mathrm{~mA}\right)$	± 60	V
On-resistance	± 0.7	V
Off-isolation @ 5 MHz	-58	Ω
Noise spectral density @ 5 MHz Harmonic distortion	0.5	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
HD2	-75	dB
HD3 Channel crosstalk @ 5 MHz	-75	dB
Operating Temp.	0 to +70	dB

Block Diagram

30122002

Typical Application

Pin Diagram

FIGURE 1. Pin Diagram of LM96530

Ordering Information

Part Number	Package Type	NSC Package Drawing	Supplied As
LM96530SQ	SQA60A	1000	
LM96530SQE			250
LM96530SQX			2000

TABLE 1. Pin Descriptions

Pin No.	Name	Type	Function and Connection
$\begin{aligned} & 1,3,5,7,9,11,13, \\ & 15 \end{aligned}$	$\begin{gathered} \mathrm{INn} \\ \mathrm{n}=0, \ldots, 7 \end{gathered}$	Input	High-voltage input
$\begin{aligned} & 45,43,41,39,37, \\ & 35,33,31 \end{aligned}$	$\begin{aligned} & \text { OUTn } \\ & \mathrm{n}=0, \ldots \end{aligned}$	Output	Low-voltage output
25	RREF	Output	External resistor to AGND. Used to set internal current sources. $\begin{aligned} & \mathrm{R}_{\mathrm{REF}}=6.25 \mathrm{k} \Omega \rightarrow \mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \\ & \mathrm{R}_{\mathrm{REF}}=12.5 \mathrm{k} \Omega \rightarrow \mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \\ & \mathrm{R}_{\mathrm{REF}}=25 \mathrm{k} \Omega \rightarrow \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} ; \\ & \mathrm{R}_{\mathrm{REF}}=50 \mathrm{k} \Omega \rightarrow \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$
59	SW_OFF	Input	$\begin{aligned} & 1=\text { Switch all channels OFF } \\ & 0=\text { Use SPITM to control switch } \end{aligned}$
60	SPI_EN	Input	1 = Enable the SPITM Interface $0=$ Disable the SPI ${ }^{\text {TM }}$ Interface and presets SPI $^{\text {TM }}$ registers for all switches ON.
58	SCSI	Input	SPITM chip select input, $0=$ Chip Select
57	SCKI	Input	SPITM compatible clock input
56	SDI	Input	SPI ${ }^{\text {TM }}$ compatible data input
53	SDO	Output	SPI ${ }^{\text {TM }}$ compatible data buffered output
52	SCKO	Output	SPI ${ }^{\text {TM }}$ compatible clock buffered output
51	$\overline{\text { SCSO }}$	Output	SPI ${ }^{\text {TM }}$ chip select buffered output
26, 27, 49, 50	VDD	Power	Positive analog supply voltage (+5V)
28, 29, 47, 48	VSS	Power	Negative analog supply voltage (-5V)
54	VLL	Power	Logic voltage supply (+2.5 to 3.3V)
0, 17	VSUB	Power	Negative high voltage supply (-65V)
$\begin{aligned} & 2,4,6,8,10,12, \\ & 14,16,55 \end{aligned}$	HVGND	Ground	High voltage reference potential (0V)
All others	AGND	Ground	Analog and logic low voltage reference input, logic ground (0V)

SPITM is a trademark of Motorola, Inc.

Absolute Maximum Ratings
 (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Maximum Junction Temperature ($\mathrm{T}_{\text {JMAX }}$)
Storage Temperature Range
Supply Voltage (VDD)
Supply Voltage (VSS)
Supply Voltage (VSUB)

IO Supply Voltage (VLL)
$+150^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
+0.3 V to +5.5 V +0.3 V and -5.5 V
-70V (Must always be most negative voltage)
-0.3 V to +3.6 V

Voltage at High Voltage Analog Inputs
-70 V to 70 V
Voltage at Logic Inputs (SCLKI, SDI SCSI, SW_OFF)
-0.3 V to VLL
Operating Ratings

Operation Junction Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
VDD, -VSS, Analog Supply	+4.7 V to 5.3 V
VLL, Logic Supply	+2.4 V to 3.5 V
High Voltage Analog Inputs	-60 V to +60 V,
	VSUB must be most
	negative supply
VSUB, Substrate bias supply	-50 V to -65 V
Package Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	$20^{\circ} \mathrm{C} / \mathrm{W}$
ESD Tolerance	
Human Body Model	2 kV
Machine Model	150 V
Charge Device Model	750 V

Analog Characteristics

Unless otherwise stated, the following conditions apply.
VLL $=+2.5 \mathrm{~V}, \mathrm{VDD}=-\mathrm{VSS}=5 \mathrm{~V}, \mathrm{VSUB}=-60 \mathrm{~V}, \mathrm{R}_{\mathrm{REF}}=50 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}, \mathrm{SW} _$OFF $=\mathrm{SPI} \mathrm{EN}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN }}$	High Voltage Analog Inputs	VSUB must be most negative voltage. See (Note 2)	-60		+60	V
e_{n}	Voltage Noise	at 5MHz		0.8		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
BW	-3dB Bandwidth			150		MHz
HD2	Second harmonic distortion	0.1V $\mathrm{V}_{\text {PP }} 5 \mathrm{MHz}$ tone applied as input		-60		dBc
HD3	Third harmonic distortion			-65		dBc
$\mathrm{X}_{\text {TALK }}$	Channel crosstalk			-69		dB
$\mathrm{T}_{\text {ON }}$	Turn-on time			2		$\mu \mathrm{s}$
$\mathrm{T}_{\text {OFF }}$	Turn-off time			0.2		$\mu \mathrm{s}$
Iso_off	Off isolation	0.1 Vpp 5 MHz tone is applied as input		-55		dB
$\mathrm{R}_{\text {ON }}$	On resistance of TR switch			125		Ω
${ }_{\text {I }}$	Insertion Loss	$\mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}$		-5.5		dB
$\mathrm{V}_{\text {CLAMP }}$	Output clamped voltage			± 0.7		V
$\mathrm{I}_{\text {MISMATCH }}$	Current source mis-match			0.03	0.2	mA
VDD \& VSS	Power Supply Current			14	20	mA
VLL				5		$\mu \mathrm{A}$
VSUB				0.45		mA

Unless otherwise stated, the following conditions apply
$\mathrm{VLL}=+2.5 \mathrm{~V}, \mathrm{VDD}=-\mathrm{VSS}=5 \mathrm{~V}, \mathrm{VSUB}=-60 \mathrm{~V}, \mathrm{R}_{\mathrm{REF}}=25 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}, \mathrm{SW} _$OFF $=\mathrm{SPI} _\mathrm{EN}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
V_{IN}	High Voltage Analog Inputs	VSUB must be most negative voltage. See (Note 2)	-60		+60	V
e_{n}	Voltage Noise	at 5MHz		0.7		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
BW	-3dB Bandwidth			150		MHz
HD2	Second harmonic distortion			-67		dBc
HD3	Third harmonic distortion	$0.1 \mathrm{~V}_{\text {PP }} 5 \mathrm{MHz}$ tone applied as input		-70		dBc
$\mathrm{X}_{\text {TALK }}$	Channel crosstalk			-73		dB
T_{ON}	Turn-on time			2		$\mu \mathrm{s}$
$\mathrm{T}_{\text {OFF }}$	Turn-off time			0.2		$\mu \mathrm{s}$
Iso_off	Off isolation	0.1Vpp 5MHz tone is applied as input		-58		dB
R_{ON}	On resistance of TR switch			48		Ω
I	Insertion Loss	$\mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}$		-4		dB
$\mathrm{V}_{\text {CLAMP }}$	Output clamped voltage			± 0.75		V
$\mathrm{I}_{\text {MISMATCH }}$	Current source mis-match			0.1	0.35	mA
VDD \& VSS	Power Supply Current			23	30	mA
VLL				5		$\mu \mathrm{A}$
VSUB				1		mA

Unless otherwise stated, the following conditions apply

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN }}$	High Voltage Analog Inputs	VSUB must be most negative voltage. See (Note 2)	-60		+60	V
e_{n}	Voltage Noise	at 5MHz		0.55		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
BW	-3dB Bandwidth			180		MHz
HD2	Second harmonic distortion	0.1 $\mathrm{V}_{\mathrm{PP}} 5 \mathrm{MHz}$ tone applied as input		-73		dBc
HD3	Third harmonic distortion			-75		dBc
$\mathrm{X}_{\text {TALK }}$	Channel crosstalk			-73		dB
$\mathrm{T}_{\text {ON }}$	Turn-on time			2		$\mu \mathrm{s}$
$\mathrm{T}_{\text {OFF }}$	Turn-off time			0.2		$\mu \mathrm{s}$
Iso_off	Off isolation	0.1Vpp 5MHz tone is applied as input		-58		dB
$\mathrm{R}_{\text {ON }}$	On resistance of TR switch			27		Ω
I	Insertion Loss	$\mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}$		-3		dB
$\mathrm{V}_{\text {CLAMP }}$	Output clamped voltage			± 0.78		V
I MISMATCH	Current source mis-match			0.25	0.6	mA
VDD \& VSS	Power Supply Current			40	49	mA
VLL				5		$\mu \mathrm{A}$
VSUB				2.2		mA

Unless otherwise stated, the following conditions apply
$\mathrm{VLL}=+2.5 \mathrm{~V}, \mathrm{VDD}=-\mathrm{VSS}=5 \mathrm{~V}, \mathrm{VSUB}=-60 \mathrm{~V}, \mathrm{R}_{\mathrm{REF}}=6.25 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}, \mathrm{SW}-$ OFF $=$ SPI_EN $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN }}$	High Voltage Analog Inputs	VSUB must be most negative voltage. See (Note 2)	-60		+60	V
e_{n}	Voltage Noise	at 5MHz		0.5		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
BW	-3dB Bandwidth			180		MHz
HD2	Second harmonic distortion	0.1 $\mathrm{V}_{\mathrm{PP}} 5 \mathrm{MHz}$ tone applied to input		-75		dBc
HD3	Third harmonic distortion			-75		dBc
$\mathrm{X}_{\text {TALK }}$	Channel crosstalk			-73		dB
T_{ON}	Turn-on time			2		$\mu \mathrm{s}$
$\mathrm{T}_{\text {OFF }}$	Turn-off time			0.2		$\mu \mathrm{s}$
Iso_off	Off isolation	0.1 Vppp 5 MHz tone is applied as input		-58		dB
$\mathrm{R}_{\text {ON }}$	On resistance of TR switch			18		Ω
I_{L}	Insertion Loss	$\mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}$		-2.5		dB
$\mathrm{V}_{\text {CLAMP }}$	Output clamped voltage			± 0.8		V
$\mathrm{I}_{\text {MISMATCH }}$	Current source mis-match			0.6	1.2	mA
VDD \& VSS	Power Supply Current			75	86	mA
VLL				5		$\mu \mathrm{A}$
VSUB				5		mA

Digital Characteristics

Unless otherwise stated, the following conditions apply.
$\mathrm{VLL}=+2.5 \mathrm{~V}, \mathrm{VDD}=-\mathrm{VSS}=5 \mathrm{~V}, \mathrm{VSUB}=-60 \mathrm{~V}, \mathrm{R}_{\mathrm{REF}}=50 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{SW} _$OFF $=0 \mathrm{~V}, \mathrm{SPI} _\mathrm{EN}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{IH}	Logical Input "HI" Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Logical Input "LO" Voltage				0.5	V
$\mathrm{I}_{\text {IN-H/L }}$	Logic Input Current		-1	0.2	+1	$\mu \mathrm{A}$
V_{OH}	Logical Output "HI" Voltage		2.2			V
V_{OL}	Logical Output "LO" Voltage				0.3	V
$\mathrm{t}_{\text {SSELS }}$	SPITM SCSI Setup Time		11			ns
$\mathrm{t}_{\text {SSELH }}$	SPI ${ }^{\text {TM }}$ SCSI Hold Time		11			ns
$t_{\text {SSELHI }}$	SPITM SCSI HI Time			250		ns
$\mathrm{t}_{\text {ws }}$	SPI ${ }^{\text {TM }}$ SDI Setup Time		11			ns
$\mathrm{t}_{\text {WH }}$	SPITM SDI Hold Time		11			ns
t_{OD}	SPITM SCLKI to SDO Propagation Delay	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$			25	ns
$\mathrm{t}_{\text {VALID }}$	SPI ${ }^{\text {TM }}$ SCSI to T/R Switch State Change Delay			30		ns
$\mathrm{t}_{\text {SCLK }}$	SPITM SCLKI Period		100			ns
	SPITM SCLKI Duty Cycle	See (Note 5)	45		55	\% of CLK Period
$\mathrm{t}_{\text {SCLKOD-H }}$	SPITM SCLKI-HI to SCLKO- HI Propagation Delay				12	ns
$\mathrm{t}_{\text {SCLKOD-L }}$	SPITM SCLKI-LO to SCLKOLO Propagation Delay				12	ns
$\mathrm{t}_{\text {SCSOD-H }}$	SPITM SCSI-HI to SCSO-HI Propagation Delay				12	ns
$\mathrm{t}_{\text {SCSOD-L }}$	SPITM SCLSI-LO to SCLSO- LO Propagation Delay				12	ns
	Maximum Number of DaisyChained devices	SCLKI Freq. $=10 \mathrm{MHz}$		16		

Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is guaranteed to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: Total input signal levels, including any transient voltage overshoots, must be within this maximum voltage range.
Note 3: The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin.
Note 4: Min and Max limits are 100% production tested at $25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate National's Average Outgoing Quality Level (AOQL).
Note 5: Guarantee by design

SPITM Timing

30122005
FIGURE 2. SPI ${ }^{\text {TM }}$ Timing Diagram

Typical Performance Characteristics

$\mathrm{VLL}=+2.5 \mathrm{~V}, \mathrm{VDD}=-\mathrm{VSS}=5 \mathrm{~V}, \mathrm{VSUB}=-60 \mathrm{~V}, \mathrm{R}_{\mathrm{REF}}=50 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{T}}=50 \Omega, \mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$.

Functional Description

The LM96530 RX switch provides an 8-channel receive side interface solution for medical ultrasound applications suitable for integration into multi-channel (128/256 channel) systems.

Its diode-bridge-based architecture allows high-speed lowdistortion channel designs targeting low-power, portable systems. A complete system can be designed using National's companion LM965XX chipset.

FIGURE 3. Block Diagram of T/R Channel

A functional block diagram of the IC is shown in. Each RX switch channel on the IC has a high-voltage input that can be directly connected to a transducer driven by a high-voltage pulser, such as the LM96550. The input feeds into a diode bridge with its output being diode-clamped to $\pm 0.7 \mathrm{~V}$. The diode bridge bias current is set to 1 mA with Rref $=50 \mathrm{~K} \Omega$. Therefore, the output can be directly connected to a low noise amplifier (LNA) stage which must be protected from the highvoltage signals on the transducer.
The bias current of the bridge is determined by two equallysized current sources with their current value ranging between 0 and 8 mA depending on the external resistor Rref at the input of the bandgap reference block. While the bias current is the same value for all channels on the IC, each channel can be switched on and off individually with an 8-bit shift register that is programmed via a SPI ${ }^{T M}$ compatible bus.
The on-chip analog circuitry requires dual 5V supplies VDD and VSS, a single logic supply VLL, and a high voltage negative bias, VSUB.

SERIAL INTERFACE OPERATION

The digital interface is comprised of an 8-bit shift register and a latch. Each bit controls one T/R switch channel, where the MSB bit, i.e., the first bit written (D7) controls channel 7, and the LSB bit (DO) controls channel 0 . The three input pins, SDI, SCSI and SCKI, are all Schmitt Trigger inputs with 0.5 V typical hysteresis. The output pins SDO, SCSO, and SCLKO are SPITM compatible. The serial data input SDI is synchronously read into the shift register on the rising edge of the clock SCKI. When SCSI changes from low to high, the data in the shift register is transferred to the latch circuit, and output on the parallel data signals P0 through P7 which drive the switched bias current sources for channels $n=0, \ldots, 7$, respectively. When SCSI changes from high to low, the latch output Pn, and thus the biasing condition, does not change.

DAISY CHAINING MULTIPLE LM96530 ICs

For connecting multiple T/R switch ICs, the LM965XX SPITM_ compatible bus can be daisy-chained up to 16 ICs at 10 MHz SCLKI for easy PCB routing. The inputs SDI, SCSI and SCLKI are daisy-chained together with SDO, SCSO and SCLKO. Therefore, the next IC's SDI is connected to the previous IC's SDO. Similarly, the next IC's SCSI is connected to the previous IC's SCSO, and the next IC's SCLKI is connected to the previous IC's SCLKO, as shown in. Daisy-chaining multiple LM96530 devices amounts to one large shift register with the number of bits being equal to 8 times the number of LM96530

ICs. For example, if 3 LM96530 ICs are daisy-chained, one can picture a 24 -bit shift register. Thus, the MSB or first bit written on the SDI line (D23) will control channel 7 of the last LM96530, i.e., the IC that is daisy-chained the farthest away from the SPI master. The LSB or last bit written on the SDI line (D0) will control channel 0 of the first LM96530, i.e., the IC that is closest to the SPI master. It is important to note that If only one particular channel of an IC in the daisy-chain requires updating, all of the ICs, i.e., the entire shift register, must be written to.

FIGURE 4. 16 LM96530 Devices Daisy Chained @ SCLKI = 16MHz

BASIC OPERATION WITHOUT SERIAL INTERFACE COMMUNICATION

To disable the SPI ${ }^{\text {TM }}$ compatible interface, connect the pin SPI_EN to AGND. To reverse bias all 8 channels of the T/R switch, connect the pin, SW_OFF to VLL. To forward bias all 8 channels of the T/R switch, connect the pin, SW_OFF to AGND.

POWER-UP AND POWER-DOWN SEQUENCES

VSUB needs to always be the most negative supply - equal to or more negative than VSS or the most negative transmit pulse at all times. The power sequence should be to applied to VSUB first, followed by the remaining supplies in any order.

Physical Dimensions inches (millimeters) unless otherwise noted

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications \& Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagicTM	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2011 National Semiconductor Corporation
For the most current product information visit us at www.national.com

	National Semiconductor Americas Technical Support Center	National Semiconductor Europe Email: support@nsc.com	Email: europe.support@nsc.com	
		National Semiconductor Asia Pacific Technical Support Center	National Semiconductor Japan Technical Support Center	
Tel: $1-800-272-9959$				

[^0]
[^0]: www.national.com

