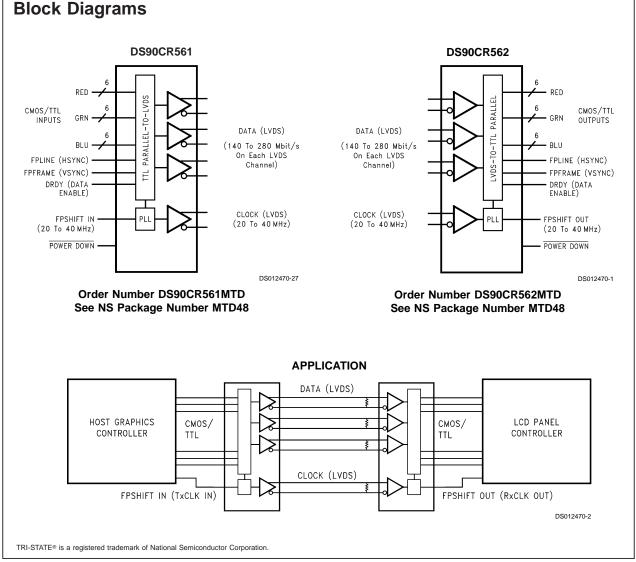
July 1997

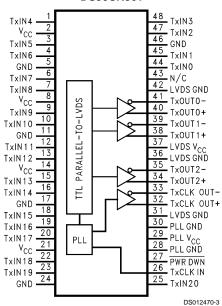
DS90CR561/DS90CR562 LVDS 18-Bit Color Flat Panel Display (FPD) Link

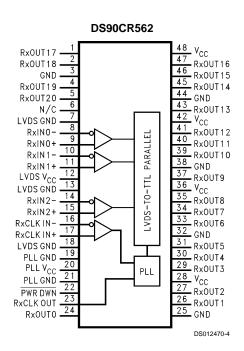

General Description

The DS90CR561 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CR562 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of 40 MHz, 18 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FP-FRAME, DRDY) are transmitted at a rate of 280 Mbps per LVDS data channel. Using a 40 MHz clock, the data throughput is 105 Megabytes per second. These devices are offered with rising edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features


- Up to 105 Megabyte/sec bandwidth
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design
- Power-down mode
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard



DS90CR561/DS90CR562

Connection Diagrams

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.3V to +6V
CMOS/TTL Input Voltage	-0.3V to (V _{CC} + 0.3V)
CMOS/TTL Ouput Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Receiver Input	
Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Receiver Input	
Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Output Short Circuit	
Duration	continuous
Junction Temperature	+150°C
Storage Temperature	
Range	–65°C to +150°C
Lead Temperature	
(Soldering, 4 sec.)	+260°C

Maximum Power Dissipation @ +2	25°C
MTD48 (TSSOP) Package:	
DS90CR561	1.98W
DS90CR562	1.89W
Package Derating:	
DS90CR561	16 mW/°C above +25°C
DS90CR562	15 mW/°C above +25°C
This device does not meet 2000V	ESD rating (Note 4)

Recommended Operating Conditions

	Min	Nom	Мах	Units
Supply Voltage (V _{CC})	4.5	5.0	5.5	V
Operating Free Air Temperature				
(T _A)	-10	+25	+70	°C
Receiver Input Range	0		2.4	V
Supply Noise Voltage (V_{CC})			100	$mV_{P\text{-}P}$

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
CMOS/	TTL DC SPECIFICATIONS	·		-			
VIH	High Level Input Voltage			2.0		V _{cc}	V
V _{IL}	Low Level Input Voltage			GND		0.8	V
V _{OH}	High Level Output Voltage	$I_{OH} = -0.4 \text{ mA}$		3.8	4.9		V
V _{OL}	Low Level Output Voltage	I _{OL} = 2 mA			0.1	0.3	V
V _{CL}	Input Clamp Voltage	$I_{CL} = -18 \text{ mA}$			-0.79	-1.5	V
I _{IN}	Input Current	$V_{IN} = V_{CC}$, GND, 2.5V or 0.4V			±5.1	±10	μA
I _{os}	Output Short Circuit Current	V _{OUT} = 0V				-120	mA
LVDS C	DRIVER DC SPECIFICATIONS	L		-			
V _{OD}	Differential Output Voltage	R _L = 100Ω		250	290	450	mV
ΔV_{OD}	Change in V _{OD} between					35	mV
	Complimentary Output States						
V _{CM}	Common Mode Voltage			1.1	1.25	1.375	V
ΔV_{CM}	Change in V _{CM} between					35	mV
	Complimentary Output States						
V _{OH}	High Level Output Voltage				1.3	1.6	V
V _{OL}	Low Level Output Voltage			0.9	1.01		V
l _{os}	Output Short Circuit Current	$V_{OUT} = OV, R_{L} = 100\Omega$			-2.9	-5	mA
I _{oz}	Output TRI-STATE® Current	$\overline{Power Down} = 0V, V_{OUT} = 0V \text{ or } V_{COUT}$	0		±1	±10	μA
LVDS F	RECEIVER DC SPECIFICATIONS						
V_{TH}	Differential Input High Threshold	V _{CM} = +1.2V				+100	mV
V _{TL}	Differential Input Low Threshold			-100			mV
I _{IN}	Input Current	$V_{IN} = +2.4V$	$V_{CC} = 5.5V$			±10	μA
		$V_{IN} = 0V$				±10	μA
TRANS	MITTER SUPPLY CURRENT						
I _{CCTW}	Transmitter Supply Current,	$R_{L} = 100\Omega, C_{L} = 5 \text{ pF},$	f = 32.5 MHz		34	51	mA
	Worst Case	Worst Case Pattern (Figures 1, 3)	f = 37.5 MHz		36	53	mA
I _{CCTG}	Transmitter Supply Current,	$R_{L} = 100\Omega, C_{L} = 5 \text{ pF},$	f = 32.5 MHz		27	47	mA
	16 Grayscale	Grayscale Pattern (Figures 2, 3)	f = 37.5 MHz		28	48	mA

Electrical Characteristics (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Conditions			Тур	Max	Units
TRANS	MITTER SUPPLY CURRENT						
I _{CCTZ}	Transmitter Supply Current,	Power Down = Low			1	25	μA
	Power Down						
RECEIV	ER SUPPLY CURRENT						
I _{CCRW}	Receiver Supply Current,	C _L = 8 pF,	f = 32.5 MHz		55	75	mA
	Worst Case	Worst Case Pattern (Figures 1, 4)	f = 37.5 MHz		60	80	mA
I _{CCRG}	Receiver Supply Current,	C _L = 8 pF,	f = 32.5 MHz		35	55	mA
	16 Grayscale	16 Grayscale Pattern (Figures 2, 4)	f = 37.5 MHz		37	58	mA
I _{CCRZ}	Receiver Supply Current,	Power Down = Low			1	10	μA
	Power Down						

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Typical values are given for V_{CC} = 5.0V and T_A = +25 $^\circ\text{C}.$

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and Δ V_{OD}).

Note 4: ESD Rating: HBM (1.5 kΩ, 100 pF)

PLL V $_{CC} \ge 1000V$

All other pins $\ge 2000V$

EIAJ (0Ω, 200 pF) ≥ 150V

Transmitter Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter		Min	Тур	Max	Units
LLHT	LVDS Low-to-High Transition Time (Figure 3)			0.75	1.5	ns
LHLT	LVDS High-to-Low Transition Time (Figure 3)			0.75	1.5	ns
TCIT	TxCLK IN Transition Time (Figure 5)				8	ns
TCCS	TxOUT Channel-to-Channel Skew (Note 5) (Figure 6)				350	ps
TPPos0	Transmitter Output Pulse Position for Bit 0 (Figure 17)	f = 20 MHz	-200	150	350	ps
TPPos1	Transmitter Output Pulse Position for Bit 1		6.3	7.2	7.5	ns
TPPos2	Transmitter Output Pulse Position for Bit 2		12.8	13.6	14.6	ns
TPPos3	Transmitter Output Pulse Position for Bit 3		20	20.8	21.5	ns
TPPos4	Transmitter Output Pulse Position for Bit 4		27.2	28	28.5	ns
TPPos5	Transmitter Output Pulse Position for Bit 5		34.5	35.2	35.6	ns
TPPos6	Transmitter Output Pulse Position for Bit 6		42.2	42.6	42.9	ns
TPPos0	Transmitter Output Pulse Position for Bit 0 (Figure 17)	f = 40 MHz	-100	100	300	ps
TPPos1	Transmitter Output Pulse Position for Bit 1		2.9	3.3	3.9	ns
TPPos2	Transmitter Output Pulse Position for Bit 2		6.1	6.6	7.1	ns
TPPos3	Transmitter Output Pulse Position for Bit 3		9.7	10.2	10.7	ns
TPPos4	Transmitter Output Pulse Position for Bit 4		13	13.5	14.1	ns
TPPos5	Transmitter Output Pulse Position for Bit 5		17	17.4	17.8	ns
TPPos6	Transmitter Output Pulse Position for Bit 6		20.3	20.8	21.4	ns
TCIP	TxCLK IN Period (Figure 7)		25	Т	50	ns
TCIH	TxCLK IN High Time (Figure 7)		0.35T	0.5T	0.65T	ns
TCIL	TxCLK IN Low Time (Figure 7)		0.35T	0.5T	0.65T	ns
TSTC	TxIN Setup to TxCLK IN (Figure 7)	f = 20 MHz	14			ns
		f = 40 MHz	8			ns
THTC	TxIN Hold to TxCLK IN (Figure 7)	2.5	2		ns	
TCCD	TxCLK IN to TxCLK OUT Delay @ 25°C,		5		9.7	ns
	$V_{CC} = 5.0V (Figure 9)$					
TPLLS	Transmitter Phase Lock Loop Set (Figure 11)				10	ms

Transmitter Switching Characteristics (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Units
TPDD	Transmitter Powerdown Delay (Figure 15)			100	ns

Note 5: This limit based on bench characterization.

Receiver Switching Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

Parameter		Min	Тур	Max	Units
CMOS/TTL Low-to-High Transition Time (Fig	gure 4)		3.5	6.5	ns
CMOS/TTL High-to-Low Transition Time (Fig	gure 4)		2.7	6.5	ns
RxCLK OUT Period (Figure 8)		25	Т	50	ns
Receiver Skew Margin (Note 6)	f = 20 MHz	1.1			ns
$V_{CC} = 5V, T_A = 25^{\circ}C$ (Figure 18)	f = 40 MHz	700			ps
RxCLK OUT High Time (Figure 8)	f = 20 MHz	19			ns
	f = 40 MHz	6			ns
RxCLK OUT Low Time (Figure 8)	f = 20 MHz	21.5			ns
	f = 40 MHz	10.5			ns
RxCLK Setup to RxCLK OUT (Figure 8)	f = 20 MHz	14			ns
	f = 40 MHz	4.5			ns
RxCLK Hold to RxCLK OUT (Figure 8)	f = 20 MHz	16			ns
	f = 40 MHz	6			ns
RxCLK IN to RxCLK OUT Delay @ 25°C,	1	7.6		11.9	ns
$V_{CC} = 5.0V$ (Figure 10)					
Receiver Phase Lock Loop Set (Figure 12)				10	ms
Receiver Powerdown Delay (Figure 16)				1	μs
	CMOS/TTL Low-to-High Transition Time (FigCMOS/TTL High-to-Low Transition Time (FigRxCLK OUT Period (Figure 8)Receiver Skew Margin (Note 6) $V_{CC} = 5V, T_A = 25^{\circ}C$ (Figure 18)RxCLK OUT High Time (Figure 8)RxCLK OUT Low Time (Figure 8)RxCLK Setup to RxCLK OUT (Figure 8)RxCLK Hold to RxCLK OUT (Figure 8)RxCLK IN to RxCLK OUT (Figure 8)RxCLK IN to RxCLK OUT (Figure 10)Receiver Phase Lock Loop Set (Figure 12)	CMOS/TTL Low-to-High Transition Time (Figure 4)CMOS/TTL High-to-Low Transition Time (Figure 4)RxCLK OUT Period (Figure 8)Receiver Skew Margin (Note 6) $f = 20 \text{ MHz}$ $V_{CC} = 5V, T_A = 25^{\circ}C$ (Figure 18) $f = 40 \text{ MHz}$ RxCLK OUT High Time (Figure 8) $f = 20 \text{ MHz}$ RxCLK OUT Low Time (Figure 8) $f = 20 \text{ MHz}$ RxCLK Setup to RxCLK OUT (Figure 8) $f = 20 \text{ MHz}$ RxCLK Hold to RxCLK OUT (Figure 8) $f = 20 \text{ MHz}$ RxCLK Hold to RxCLK OUT (Figure 8) $f = 20 \text{ MHz}$ RxCLK IN to RxCLK OUT (Figure 8) $f = 20 \text{ MHz}$ RxCLK IN to RxCLK OUT (Figure 8) $f = 20 \text{ MHz}$ RxCLK IN to RxCLK OUT Delay @ 25°C, $V_{CC} = 5.0V$ (Figure 10)Receiver Phase Lock Loop Set (Figure 12)	$ \begin{array}{ c c c c } \hline CMOS/TTL Low-to-High Transition Time (Figure 4) \\ \hline CMOS/TTL High-to-Low Transition Time (Figure 4) \\ \hline RxCLK OUT Period (Figure 8) \\ \hline Receiver Skew Margin (Note 6) \\ \hline V_{CC} = 5V, T_A = 25 ^{\circ}C (Figure 18) \\ \hline f = 40 \text{ MHz} \\ \hline f = 20 \text{ MHz} \\ \hline f = 20 \text{ MHz} \\ \hline f = 20 \text{ MHz} \\ \hline f = 40 $	CMOS/TTL Low-to-High Transition Time (Figure 4)3.5CMOS/TTL High-to-Low Transition Time (Figure 4)3.5CMOS/TTL High-to-Low Transition Time (Figure 4)2.7RxCLK OUT Period (Figure 8)25Receiver Skew Margin (Note 6) $f = 20 \text{ MHz}$ $V_{CC} = 5V, T_A = 25^{\circ}C$ (Figure 18) $f = 40 \text{ MHz}$ RxCLK OUT High Time (Figure 8) $f = 20 \text{ MHz}$ $rack{Particle for the figure 8}f = 20 \text{ MHz}rack{Particle for the figure 8}f = 20 \text{ MHz}RxCLK OUT Low Time (Figure 8)f = 20 \text{ MHz}rack{Particle for the figure 8}f = 20 \text{ MHz}rack{Particle for the figure 10}f = 40 \text{ MHz}rack{Particle for the figure 10}rack{Particle for the figure 12}$	CMOS/TTL Low-to-High Transition Time (Figure 4)3.5CMOS/TTL High-to-Low Transition Time (Figure 4)3.56.5RxCLK OUT Period (Figure 8)25T50Receiver Skew Margin (Note 6) $V_{CC} = 5V, T_A = 25°C (Figure 18)$ f = 20 MHz1.1 $V_{CC} = 5V, T_A = 25°C (Figure 18)$ f = 20 MHz19RxCLK OUT High Time (Figure 8)f = 20 MHz19f = 40 MHz66RxCLK OUT Low Time (Figure 8)f = 20 MHz10.5RxCLK Setup to RxCLK OUT (Figure 8)f = 20 MHz14f = 40 MHz4.56RxCLK Hold to RxCLK OUT (Figure 8)f = 20 MHz16RxCLK IN to RxCLK OUT (Figure 8)f = 20 MHz16RxCLK IN to RxCLK OUT Delay @ 25°C, $V_{CC} = 5.0V$ (Figure 10)7.611.9Receiver Phase Lock Loop Set (Figure 12)10

Note 6: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account for transmitter output skew (TCCS) and the setup and hold time (internal data sampling window), allowing LVDS cable skew dependant on the type/length and source clock (TxCLK IN) jitter. RSKM ≥ cable skew (type, length) + source clock jitter (cycle to cycle).

AC Timing Diagrams

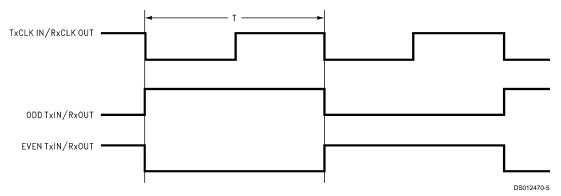
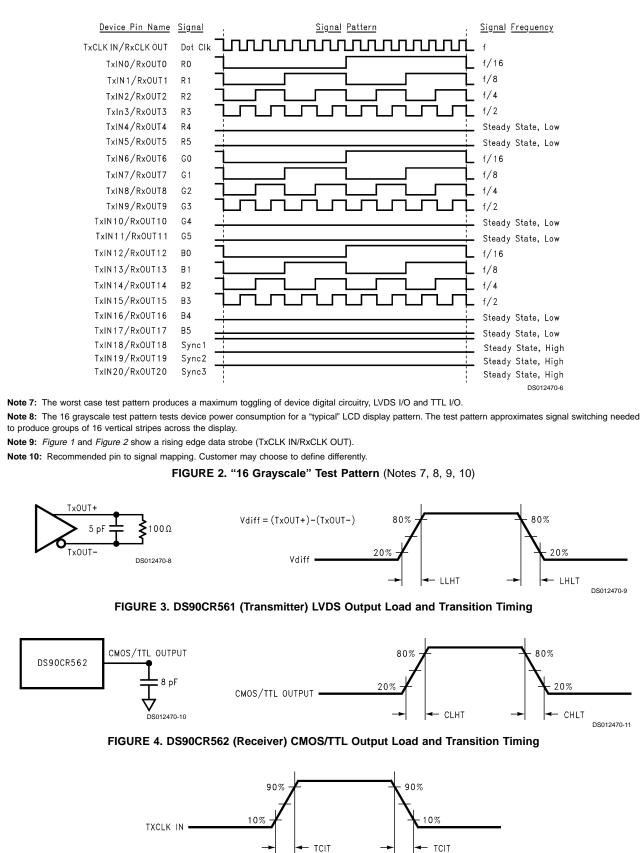
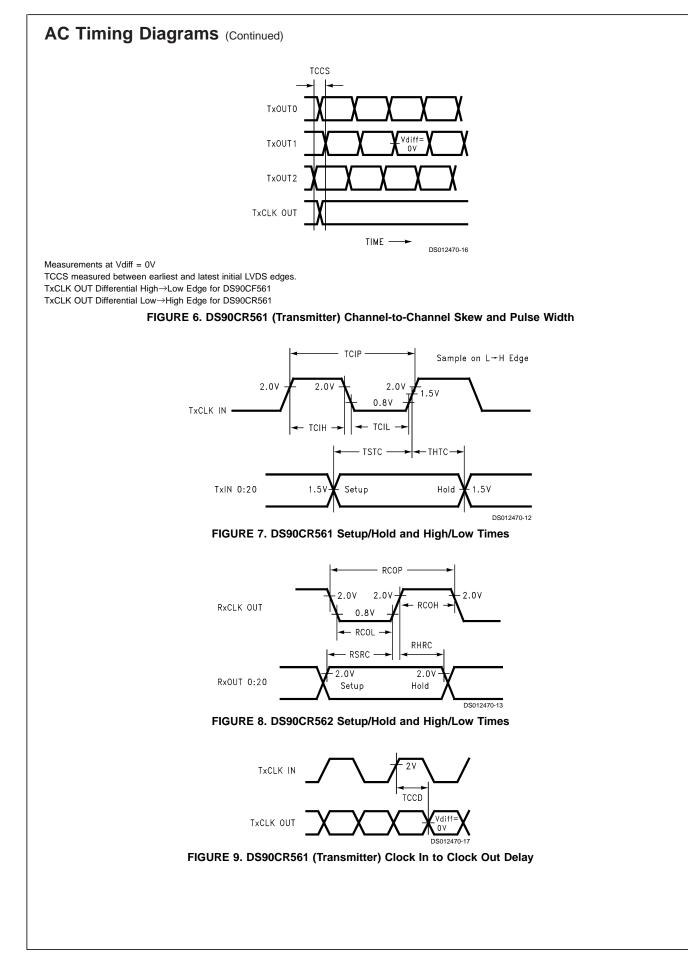
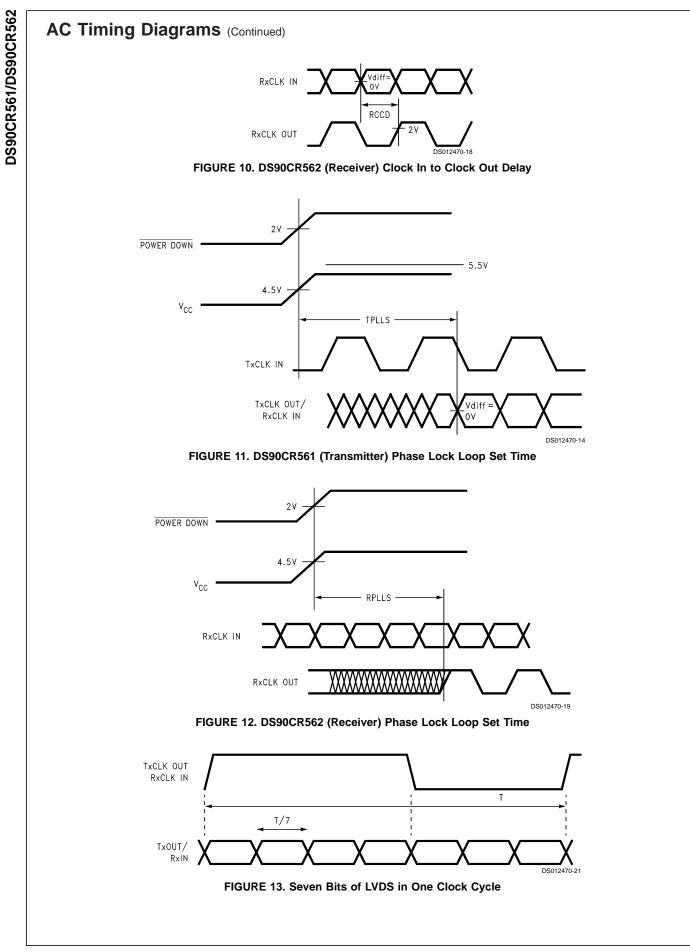
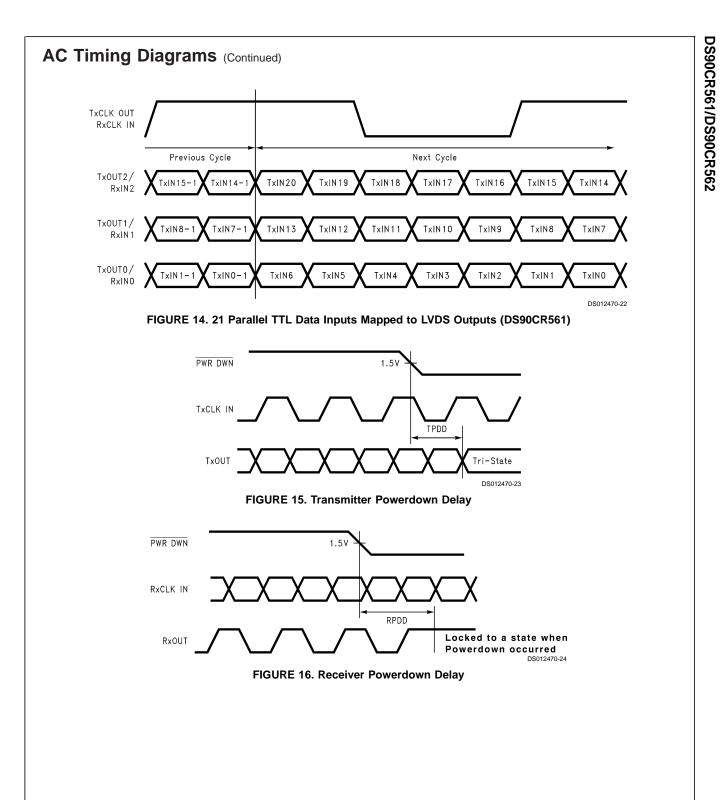


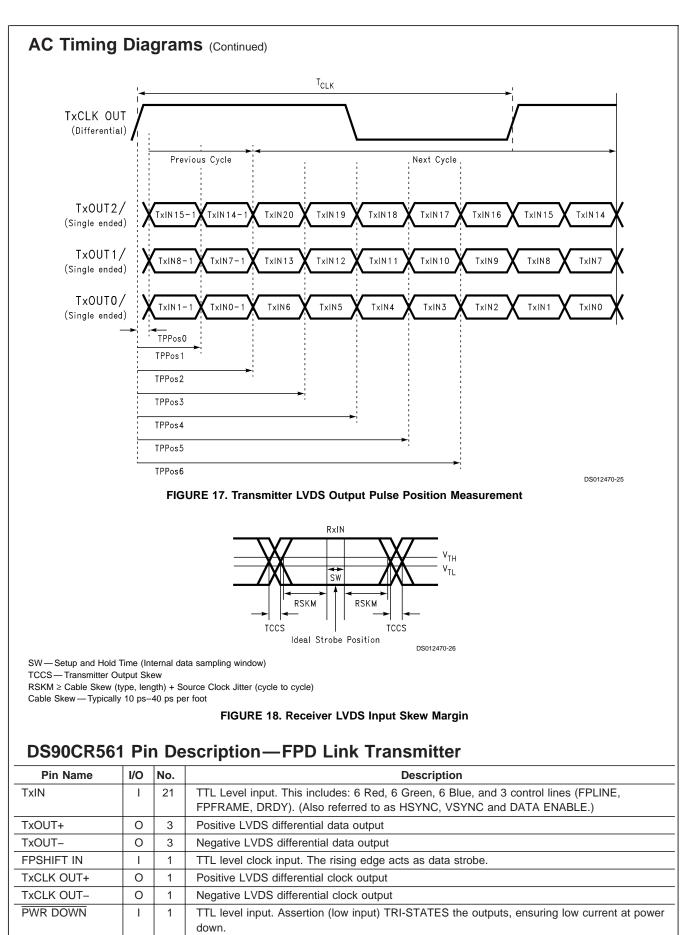
FIGURE 1. "Worst Case" Test Pattern

DS90CR561/DS90CR562

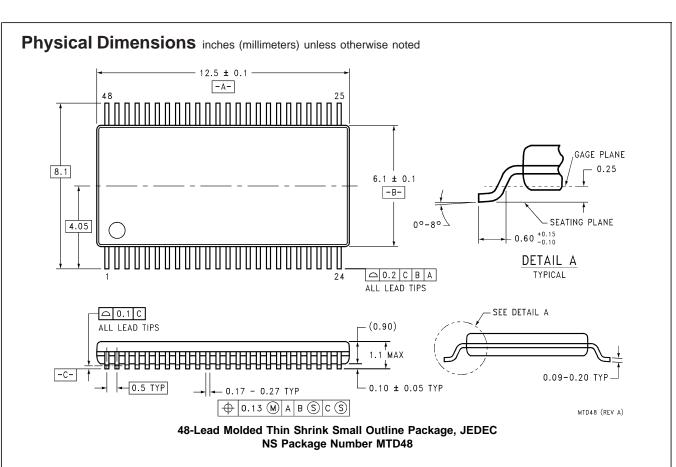
AC Timing Diagrams (Continued)


FIGURE 5. DS90CR561 (Transmitter) Input Clock Transition Time


DS012470-15

DS90CR561/DS90CR562


DS90CR561/DS90CR562

DS90CR561 Pin Description—FPD Link Transmitter (Continued)

Pin Name	I/O	No.	Description		
V _{cc}	1	4	Power supply pins for TTL inputs		
GND	I	5	Ground pins for TTL inputs		
PLL V _{CC}	1	1	Power supply pin for PLL		
PLL GND	1	2	Ground pins for PLL		
LVDS V _{CC}	1	1	Power supply pin for LVDS outputs		
LVDS GND	1	3	Ground pins for LVDS outputs		

DS90CR562 Pin Description—FPD Link Receiver

Pin Name	I/O	No.	Description
RxIN+	1	3	Positive LVDS differential data inputs
RxIN–	1	3	Negative LVDS differential data inputs
RxOUT	0	21	TTL level outputs. This includes: 6 Red, 6 Green, 6 Blue, and 3 control lines (FPLINE, FPFRAME, DRDY). (Also referred to as HSYNC, VSYNC and DATA ENABLE.)
RxCLK IN+	1	1	Positive LVDS differential clock input
RxCLK IN-	1	1	Negative LVDS differential clock input
FPSHIFT OUT	0	1	TTL level clock output. The rising edge acts as data strobe.
PWR DOWN	1	1	TTL level input. Assertion (low input) maintains the receiver outputs in the previous state.
V _{cc}	1	4	Power supply pins for TTL outputs
GND	1	5	Ground pins for TTL outputs
PLL V _{CC}	1	1	Power supply for PLL
PLL GND	I	2	Ground pin for PLL
LVDS V _{CC}	I	1	Power supply pin for LVDS inputs
LVDS GND	I	3	Ground pins for LVDS inputs

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

<u>Products</u> > <u>Analog - Flat Panel Display</u> > <u>Flat Panel Display Link</u> > DS90CR561

DS90CR561 Product Folder

LVDS 18-Bit Color Flat Panel Display (FPD) Link

See Also: DS90C363A - 3V supply

<u>General</u> <u>Description</u>	<u>Features</u>	Datasheet	Package <u>& Models</u>	<u>Samples</u> <u>& Pricing</u>	<u>Application</u> <u>Notes</u>
Parametric Table			Parametric Table		
Supply Voltage	5 V		Graphic Bits (bit)		6
Pixel Clock	20 - 40 M	IHz	Strobe Edge	Rising	
2			Function		Transmitter

Datasheet

Title	Size in Kbytes	Date	View Online	Download	Receive via Email
DS90CR561 DS90CR562 LVDS 18-Bit Color Flat Panel Display (FPD) Link	242 Kbytes	16- Aug- 00	<u>View Online</u>	Download	<u>Receive via</u> Email
DS90CR561 DS90CR562 LVDS 18-Bit Color Flat Panel Display (FPD) Link (JAPANESE)	434 Kbytes		View Online	Download	Receive via

If you have trouble printing or viewing PDF file(s), see <u>Printing Problems</u>.

Package Availability, Models, Samples & Pricing

Part Number	Package		Status	Models		Samples & Electronic	Budgetary Pricing		Std Pack	<u>Package</u> Marking	
	Туре	Pins	MSL		SPICE	IBIS	Orders	Qty	\$US each	Size	Marking
DS90CR561MTD	<u>TSSOP</u>	48	<u>MSL</u>	Full production	N/A	N/A	24 Hour Buy Now	1K+	\$5.9500	rail of 38	[logo]¢U¢Z¢2¢T DS90CR561MTD ¢B
DS90CR561MTDX	<u>TSSOP</u>	48	MSL	Full production	N/A	N/A		1K+	\$5.9500	reel of 1000	[logo]¢U¢Z¢2¢T DS90CR561MTD ¢B

DS90CR561 MDC	Die	Full production	N/A	N/A	Samples	tray of N/A	-
DS90CR561 MWC	Wafer	Full production	N/A	N/A		wafer jar of N/A	-

General Description

The DS90CR561 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CR562 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of 40 MHz, 18 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 280 Mbps per LVDS data channel. Using a 40 MHz clock, the data throughput is 105 Megabytes per second. These devices are offered with rising edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- Up to 105 Megabyte/sec bandwidth
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design
- Power-down mode
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard

Application Notes

Title	Size in Kbytes	Date	View Online	Download	Receive via Email
AN-1032: Application Note 1032 An Introduction to FPD Link	80 Kbytes	5- Oct- 98	<u>View Online</u>	Download	<u>Receive via</u> <u>Email</u>
Application Note 1032 An Introduction to FPD Link (JAPANESE)	133 Kbytes		View Online	Download	Receive via

If you have trouble printing or viewing PDF file(s), see <u>Printing Problems</u>.

[Information as of 5-Aug-2002]
Search
Design Purchasing Quality Company Home

<u>About Languages</u> . <u>Website Guide</u> . <u>About</u> "Cookies"</u> . National is <u>QS</u> 9000 Certified . <u>Privacy/Security Statement</u> . <u>Contact Us</u> . <u>Site Terms & Conditions of Use</u> . Copyright 2002 © National Semiconductor Corporation . <u>My Preferences</u> . <u>Feedback</u> Products > Analog - Flat Panel Display > Flat Panel Display Link > DS90CR562

DS90CR562 Product Folder

LVDS 18-Bit Color Flat Panal Display (FPD) Link

See Also: DS90CF364A - 3V supply

<u>General</u> <u>Description</u>	<u>Features</u>	Datasheet	<u>Package</u> <u>& Models</u>	<u>Samples</u> <u>& Pricing</u>
Parametric Table		Parametric Ta	ble	
Supply Voltage	5 V	Graphic Bits (bit)	6
Pixel Clock	20 - 40 MHz	Strobe Edge		Rising
7 <u>.</u>	i.	Function		Receiver

Datasheet

Title	Size in Kbytes	Date	View Online	Download	Receive via Email
DS90CR561 DS90CR562 LVDS 18-Bit Color Flat Panel Display (FPD) Link	242 Kbytes	16- Aug- 00	<u>View Online</u>	Download	<u>Receive via</u> Email
DS90CR561 DS90CR562 LVDS 18-Bit Color Flat Panel Display (FPD) Link (JAPANESE)	438 Kbytes		View Online	Download	Receive via

If you have trouble printing or viewing PDF file(s), see <u>Printing Problems</u>.

Package Availability, Models, Samples & Pricing

Part Number	Package		Status	Models		Samples & Electronic	Budgetary Pricing		Std Pack	Package Marking	
	Туре	Pins	MSL		SPICE	IBIS	Orders	Qty	\$US each	Size	<u>Marking</u>
DS90CR562MTD	<u>TSSOP</u>	48	MSL	Full production	N/A	N/A	24 Hour Buy Now	1K+	\$5.9500	rail of 38	[logo]¢U¢Z¢2¢T DS90CR562MTD ¢B
DS90CR562MTDX	TSSOP	48	MSL	Full production	N/A	N/A		1K+	\$5.9500	reel of 1000	[logo]¢U¢Z¢2¢T DS90CR562MTD ¢B

DS90CR562 MDC	Die	Full production	N/A	N/A	Samples	tray of N/A	_
DS90CR562 MWC	<u>Wafer</u>	Full production	N/A	N/A		wafer jar of N/A	-

General Description

The DS90CR561 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CR562 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of 40 MHz, 18 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FPFRAME, DRDY) are transmitted at a rate of 280 Mbps per LVDS data channel. Using a 40 MHz clock, the data throughput is 105 Megabytes per second. These devices are offered with rising edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- Up to 105 Megabyte/sec bandwidth
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design
- Power-down mode
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Rising edge data strobe
- Compatible with TIA/EIA-644 LVDS standard

[Information as of 5-Aug-2002]

Search	<u>Design</u>	Purchasing	<u>Quality</u>	<u>Company</u>	Home
About Languages . Website	Guide . About "Coo	<u>kies"</u> . National is <u>QS</u>	9000 Certified . Priv	vacy/Security Statement	<u>t</u> .
Contact Us Site Torms &	Conditions of Use C	onumight 2002 @ Notic	anal Camicanductor	Composition Mr. Drofor	anaaa

<u>Contact Us</u> . <u>Site Terms & Conditions of Use</u> . Copyright 2002 © National Semiconductor Corporation . <u>My Preferences</u> . <u>Feedback</u>