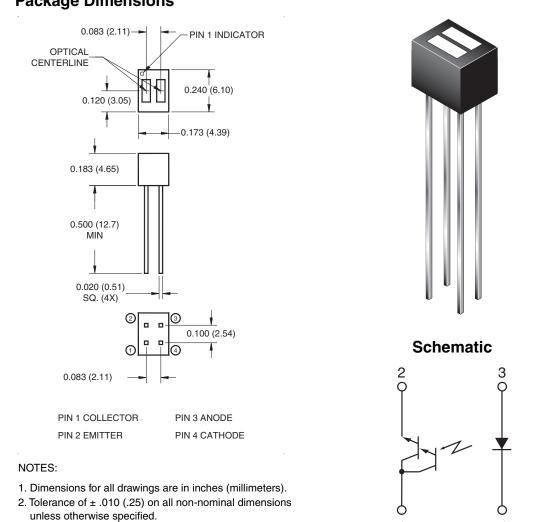
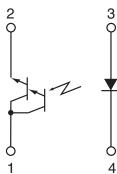
QRD1313 Reflective Object Sensor


QRD1313 Reflective Object Sensor

Features


- Photodarlington output
- Unfocused for sensing diffused surfaces
- Low cost plastic housing
- Designed for paper path and other non-contact surface sensing

Description

The QRD1313 reflective sensor consists of an infrared emitting diode and an NPN silicon photodarlington mounted side by side in a black plastic housing. The on-axis radiation of the emitter and the on-axis response of the detector are both perpendicular to the face of the QRD1313. The photodarlington responds to radiation emitted from the diode only when a reflective object or surface is in the field of view of the detector.

- 3. Pins 2 and 4 typically .050" shorter than pins 1 and 3.
- 4. Dimensions controlled at housing surface.

Package Dimensions

Absolute Maximum Ratings (T_A = 25°C unless otherwise specified)

Parameter	Symbol	Rating	Units	
Operating Temperature	T _{OPR}	-40 to +85	°C	
Storage Temperature	T _{STG}	-40 to +100	°C	
Lead Temperature (Iron) ^(2,3,4)	T _{SOL-I}	240 for 5 sec	°C	
Lead Temperature (Flow) ^(2,3)	T _{SOL-F}	F 260 for 10 sec		
Emitter	·		•	
Continuous Forward Current	I _F	50	mA	
Reverse Voltage	V _R	5	V	
Power Dissipation ⁽¹⁾	PD	100	mW	
Sensor	·			
Collector-Emitter Voltage	V _{CEO}	15	V	
Emitter-Collector Voltage	V _{ECO}	5	V	
Power Dissipation ⁽¹⁾	PD	100	mW	

NOTES:

1. Derate power dissipation linearly 1.33 mW/°C above 25°C.

2. RMA flux is recommended.

3. Soldering iron tip 1/16" (1.6 mm) minimum from housing.

4. As long as leads are not under any stress or spring tension.

5. D is the distance from the sensor face to the reflective surface.

6. Crosstalk (I_{CK}) is the collector current measured with the indicated current on the input diode and with no reflective surface.

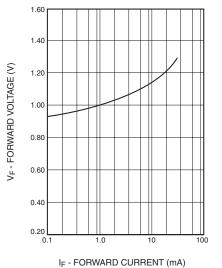
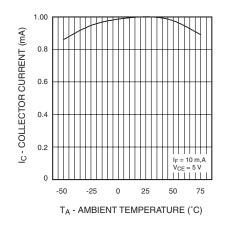
7. Measured using Eastman Kodak neutral white test card with 90% diffused reflecting as a reflecting surface.

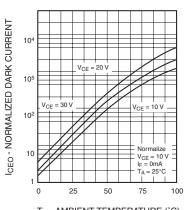
Electrical / Optical Characteristics (T_A =25°C)

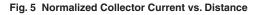
-						
Parameter	Test Conditions	Symbol	Min	Тур	Max	Units
Input (Emitter)				1	1	
Forward Voltage	I _F = 20 mA	V _F	_	_	1.7	V
Reverse Leakage Current	V _R = 2 V	I _R	_	_	100	μA
Output (Sensor)						
Emitter to Collector Breakdown	I _E = 100 μA, Ee = 0	BV _{ECO}	5	_	_	V
Collector to Emitter Breakdown	I _C = 100 μA, Ee = 0	BV _{CEO}	15	_	_	V
Collector to Emitter Leakage	V _{CE} = 5 V, Ee = 0	I _{CEO}		_	250	nA
Coupled						
On-State Collector Current ^(5,7)	I _F = 20 mA, V _{CE} = 5V, D = .050"	I _{C(ON)}	10.0	_	_	mA
Crosstalk ⁽⁸⁾	$I_{\rm F} = 20 \text{ mA}, V_{\rm CE} = 5.0 \text{V}, \text{ Ee} = 0 \qquad I_{\rm CK} \qquad$		_	10	μA	
Saturation Voltage ^(5,7)	I _F = 20 mA, I _C = 2 mA, D = .050"	V _{CE(SAT)}	_	_	1.10	V

Typical Performance Curves

Fig. 1 Forward Voltage vs. Forward Current


Fig. 3 Normalized Collector Current vs. Temperature


1.6 1.4 IC - COLLECTOR CURRENT (mA) 1.2 1.0 0.8 0.6 0.4 Vceo=5V D=0.05" 0.2 0.0 50 0 10 20 30 40 IF - FORWARD CURRENT (mA)

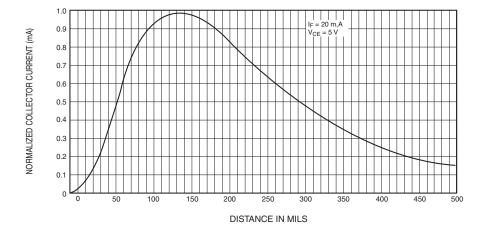

Fig. 2 Normalized Collector Current vs. Forward Current

Fig. 4 Normalized Collector Dark Current vs. Temperature

T_A - AMBIENT TEMPERATURE (°C)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	IntelliMAX™	POP™	SPM™
ActiveArray™	FASTr™	ISOPLANAR™	Power247™	Stealth™
Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™
CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CROSSVOLT™	GlobalOptoisolator™	MicroFET™	PowerTrench [®]	SuperSOT™-6
DOME™	GTO™	MicroPak™	QFET [®]	SuperSOT™-8
EcoSPARK™	HiSeC™	MICROWIRE™	QS™	SyncFET™
E²CMOS™	I²C™	MSX™	QT Optoelectronics [™]	TinyLogic [®]
EnSigna™	<i>i-Lo</i> ™	MSXPro™	Quiet Series [™]	TINYOPTO™
FACT™	ImpliedDisconnect [™]	OCX™	RapidConfigure™	TruTranslation™
FACT Quiet Seri	es™	OCXPro™	RapidConnect™	UHC™
Across the boar	d. Around the world.™	OPTOLOGIC[®]	µSerDes™	UltraFET [®]
The Power Franchise [®]		OPTOPLANAR™	SILENT SWITCHER [®]	UniFET™
Programmable Active Droop™		PACMAN™	SMART START™	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. 115