

Automotive Audio Bus (A²B) Transceiver

AD2431/AD2432/AD2433/AD2435

A²B BUS FEATURES

Line topology

Single main node, up to 16 subordinate nodes

Up to 15 m between nodes and up to 80 m overall cable length

Communication over distance

Synchronous data

Multichannel I²S/TDM to I²S/TDM

Clock synchronous, phase aligned in all nodes

Low latency node to node communication

Control and status information I²C to I²C

GPIO over distance

Bus power or local power subordinate nodes

Configurable with SIgmaStudio/SigmaStudio+ graphical software tool

AEC-Q100 qualified for automotive applications

BASELINE A²B TRANSCEIVER FEATURES

Configurable as A²B bus main node or subordinate node

Programmable via I²C and SPI interfaces

8-bit to 32-bit multichannel I2S/TDM interface

I²S/TDM/PDM programmable data rate

Up to 32 upstream and 32 downstream channels

PDM inputs for 4 high dynamic range microphones on main or subordinate nodes

Simultaneous I²S/TDM operations with up to 4 PDM microphones

Unique ID register for each transceiver

Support for crossover or straight-through cabling

Programmable settings to optimize EMC performance

AD243x TRANSCEIVER ENHANCEMENTS

Mixed Signal

Up to 50 W A²B bus power

Increased voltage regulator capacity (up to 100 mA)

ADC monitoring of supply voltages

Supports 3.3 V input at VIN in Low Voltage Input (LVI) mode

Digital

High speed SPI (up to 10 Mbps) over distance

A²B bus self-discovery

Dedicated hardware reset pin

I²S/TDM crossbar switch

Flexible mapping of Tx/Rx TDM channel data to A²B slot

Support for I²C fast mode plus (1 MHz)

Support for in cabin LED control using 4 PWM outputs

8 GPIO pins with configurable pin mapping

APPLICATIONS

Distributed audio systems

Personal audio zones

In car communications

Smart/remote tuner modules

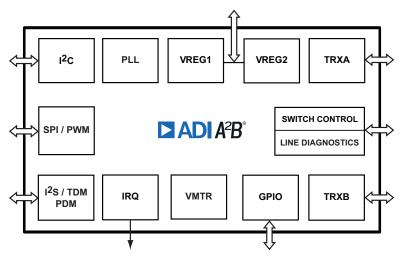


Figure 1. Functional Block Diagram

A²B and the A²B logo are registered trademarks of Analog Devices, Inc.

Rev. SpA

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD2431/AD2432/AD2433/AD2435

GENERAL DESCRIPTION

The Automotive Audio Bus ($A^2B^{\textcircled{o}}$) provides a multichannel, I^2S/TDM link over distances of up to 15 m between nodes. It embeds bidirectional synchronous pulse-code modulation (PCM) data (for example, digital audio), clock, and synchronization signals onto a single unshielded twisted pair (UTP) differential cable. A^2B supports a direct point to point connection and allows multiple, daisy-chained nodes at different locations to contribute and/or consume time division multiplexed channel content.

 A^2B is a single main node, multiple subordinate node system where the transceiver at the host controller is the main node. The main node generates clock, synchronization, and framing for all subordinate nodes. The main A^2B transceiver is programmable over a control port (I^2C/SPI) for configuration and read back. An extension of the control port protocol is embedded in the A^2B data stream. This allows direct access to registers and status information on subordinate transceivers, as well as I^2C to I^2C , SPI to I^2C , or SPI to SPI communication from the host to a

peripheral in a subordinate node. SPI to SPI communication between subordinate nodes can be performed directly and does not need to involve the main node.

The transceiver can connect directly to general-purpose digital signal processors (DSPs), field-programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), microphones, analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and codecs through a multichannel I²S/TDM interface. It also provides a pulse density modulation (PDM) interface for direct connection of up to four PDM digital microphones.

Finally, the transceiver also supports an A²B bus powering feature, where the main node supplies voltage and current to the subordinate nodes over the same daisy-chained, twisted pair wire cable as used for the communication link.

Complete technical specifications are available for the A²B transceiver. Contact your nearest Analog Devices sales office to complete the nondisclosure agreement (NDA) required to receive additional product information.

Table 1. Product Comparison Guide

Feature	AD2431	AD2432	AD2433	AD2435
Main node capable	No	No	Yes	Yes
Functional TRX blocks	A only	A + B	A + B	A + B
I ² S/TDM support	No	No	Yes	Yes
PDM microphone inputs	4 mics	4 mics	4 mics	4 mics
A ² B bus power	N/A	High (≤ 50 W)	Standard (≤ 2.7 W)	High (≤ 50 W)
Nominal bus bias voltage (VBUS)	7 V to 24 V	7 V to 24 V	4 V to 9 V	7 V to 24 V
SPI	No	No	Yes	Yes
Power configuration ¹	N/A	CFG-4	CFG-0	CFG-4

¹ N/A means not applicable.

I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).