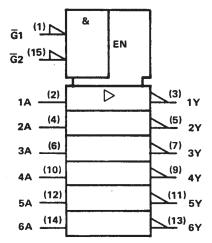
MOS MEMORY INTERFACE

- Can Drive High-Impedance Loads
- Interchangeable with National DS16149 DS16179 Drivers
- High-Speed Switching
- Minimum Input Current Required
- Damping Output Resistor Reduces Transients

description

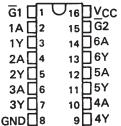
The SN54S436 and SN74S436 are monolithic integrated TTL-to-MOS drivers and interface circuits. The p-n-p input transistors use minimum current allowing increased fan-out to these drivers. Schottky-clamped transistor logic permits high-speed operation, minimum propagation time.

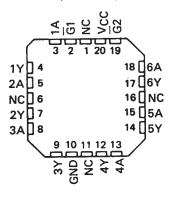

The small series damping resistor has been included in the design of the 'S436 to eliminate undesired output transient overshoot. Either enable, $\overline{\mathbb{G}}$, when high, sets the outputs to the high level for MOS RAM refresh applications.

FUNCTION TABLE

ENABLI	INPUTS	INPUT	OUTPUT			
G1	G2	INFOI				
L	L	L	Н			
L	L.	н	L			
×	н	X	н			
н	X	X	н			

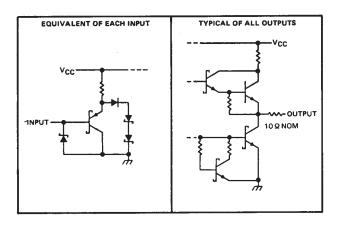
H = high level, L = low level, X = irrelevant


logic symbol†


[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

SN54S436 . . . J OR W PACKAGE SN74S436 . . . D OR N PACKAGE (TOP VIEW)



SN54S436 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

schematics of inputs and outputs

SN54S436, SN74S436 LINE DRIVER/MEMORY DRIVER CIRCUITS

SDLS211 - JANUARY 1981 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage range	– 1.5 to 7 V
	ow) 25°C free-air temperature (see Note 2)
	J package
	N package
	W package
Operating free-air temperature range:	SN54S43655°C to 125°C
	SN74S436 0°C to 70°C
	65°C to 150°C

NOTES: 1. All voltage values are with respect to network ground terminal.

2. For operation above 25 °C free-air temperature, derate as follows: J package, 11.0 mW/°C, N package, 9.2 mW/°C, W package, 8.0 mW/°C.

recommended operating conditions

		SN54S436			SN74S436			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	OWIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	٧
ViH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS			SN54S436			SN74S436			
PARAMETER			MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
VIK	V _{CC} = MIN, I _I	= -18 mA			-0.75	-1.2		-0.75	- 1.2	V
	V _{CC} = MIN, I _C	$OH = -10\mu A$		3.4	4.3		3.5	4.3		
Vон	V _{CC} = MIN,		'S436	2.4	3.5		2.6	3.5		\ \
J	1 _{OH} = -1 mA		'S437	2.5	3.5		2.7	3.5		
	VCC = MIN, IC	$DL = 10 \mu A$			0.25	0.4		0.25	0.35	
VOL	V _{CC} = MIN,		'S436		0.6	1.1		0.6	1	\ \
"	I _{OL} = 20 mA	l	'S437		0.4	0.5		0.4	0.5	
loL	V _{CC} = MIN, V See Note 3	O = 4.5 V,	V _I = 2 V		150	200		150	200	mA
los‡	V _{CC} = MAX, V	'0 = 0 V		- 100	- 250	-400	- 100	- 250	-400	mA
l _l	V _{CC} = MAX, V	'IH = 5.5 V				1			1	mA
IH	V _{CC} = MAX, V	1H = 2.7 V			0.1	50		0.1	50	μА
IIL.	V _{CC} = MAX, V				- 100	- 250		- 100	- 250	μΑ
lcc	V _{CC} = MAX, G All other inputs at	inputs at 0 V			33	60		33	60	mA
	V _{CC} = MAX, A	II inputs at 0 \	1		14	20		14	20	<u> </u>

 $^{^{\}dagger}$ All typical values are at VCC = 5 V, TA = 25 °C.

[‡] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching	characteristics,	VCC = 5	V, TA	/ =	25°	C	
-----------	------------------	---------	-------	------------	-----	---	--

PARAMETER		TEST CONDI	MIN TYP	MAX	UNIT		
	Determine from A high as V samples for	0 5'	C _L = 50 pF	4.5	7		
^t AHYL	Delay time from A high to Y starting low	See Figure 1	C _L = 500 pF	12	16	ns	
*	Delay time from A low to V starting high	See Figure 1	CL = 50 pF	5	8	8 ns	
tALYH	Delay time from A low to Y starting high	See Figure 1	C _L = 500 pF	11	16	113	
^t GHYH	Delay time from G high to Y starting high	$R_L = 2 k\Omega$ to Gnd, See Figure 2	C _L = 50 pF,	10	18	ns	
^t GLYL	Delay time from G low to Y starting low	$R_L = 2 k\Omega$ to V_{CC} , See Figure 3	C _L = 50 pF,	11	18	ns	
	Total distribution of the second of the seco	C Fi 1	C _L = 50 pF	5	8		
THL	Transition time, high-to-low-level output	See Figure 1	C _L = 500 pF	15	30	ns	
*	Transition than Investment to the	Con Elauro 1	C _L = 50 pF	6	9		
^t TLH	Transition time, low-to-high-level output	See Figure 1	C _L = 500 pF	15	30	ns	

PARAMETER MEASUREMENT INFORMATION INPUT OUTPUT OUTPUT TAHYL -**UNDER TEST** CL (SEE NOTE B) OUTPUT Y LOAD CIRCUIT **VOLTAGE WAVEFORMS** FIGURE 1 INPUT $\overline{\mathsf{G}}$ **OUTPUT** OUTPUT **UNDER TEST** OUTPUT (SEE NOTE B) Other G input is low LOAD CIRCUIT **VOLTAGE WAVEFORMS** FIGURE 2 Vcc INPUT $\overline{\mathbf{G}}$ RL = 2 kΩ **OUTPUT** OUTPUT **UNDER TEST** OUTPUT (SEE NOTE B) Other $\overline{\mathbf{G}}$ input is low LOAD CIRCUIT **VOLTAGE WAVEFORMS** FIGURE 3

NOTES: A. Input pulses are supplied by a generator having the following characteristics: PRR < 1 MHz, $Z_{out} \approx 50 \ \Omega$, $t_r < 5 \ ns$.

B. C_L includes probe and jig capacitance.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated