EIGHT-BIT PARITY CHECKER and GENERATOR

MC1046 MC1246

Advance Information

Seven Exclusive-OR gates in a single package, interconnected to provide simultaneous ODD-EVEN parity generation or checking.

CIRCUIT SCHEMATIC

MC1046, MC1246 (continued)

ELECTRICAL CHARACTERISTICS @ 25°C						TEST VOLTAGE (Vdc)/CURRENT (mAdc) VALUES					
Characteristic	Symbol	Pin Under Test	Test Limits		Unit	VIL	VIH	V _{IH max}	VEE	vcc	1,
			Min	Max	Unit	-1 500	-0 850	-0.700	-5 2	Gnd	-25
Power Supply Drain Current	¹E	,		53	mAdic				3,4,5 6,7, 8,9,10,12	14	1
Input Current	*l _{in}	3,4,5,6, 8,9,10,12	-	100	μAdc			3,4,5,6, 8,9,10,12	, , ,	14	1
Input Leakage Current	*IR	3,4,5,6, 8,9,10,12		1.0	μAdc				3,4,5,6,7, 8,9,10,12	14	†
Logic "1" Output Voltage	vон	1	-0.850	-0.700	Vdc	3,4,5,6, 3,9,10,12			7	14	,
		2				3,5,9	4.6,8,10,12	İ	1	il	2
		1				4,10	3,5,6,8,9,12		ļ		1
		2	7		*	6,8,12	3,4,5,9.10		†		2
Logic "0" Output Voltage	VOL	2	-1.800	-1.500	Vdc 	3,4,5,6 8,9,10,12			7	14	
		1				3,5,9	4,6,8,10,12				
		2	1			4.10	3,5,6,8,9,12	į	1		
		¹	7	. 🕴]		6,8,12	3,4.5,9.10		*		

ndividually test each Input using the pin connections shown

^{**}Logic "1" limits apply from no load (0 mAdc) to full load (-2.5 mAdc)

Switching Speed*** (fan-out = 15 pF)	Symbol	Pin Under Test	AC Parameters (typical)	Unit	Pulse In	Pulse Out	-4.0 Vdc VEE	+1.2 Vdc VCC	
Propagation Dalay	112+2+	2	13	ns	12	2	3. 4, 5, 6, 7, 8, 9, 10	14	
	112-2-	2	14	1 1	1	1 1	1	1 ;	
Rise Time	t2+	2	4	111		1 [
Fall Time	t ₂₋	2	6	1 1 !					
Propagation Delay	t12-1+	1	13	111	-				
	t12+1-	j ,	14	1 1 1		1 1 1			
Rise Time	11.	1	4	111				1	
Fall Time	t ₁₋	1 1	6	🛊	÷		•	1	

which presents the longest delay path to the signal. Delays from all other inputs are shorter.

--- 0 V

ty ty - 6 0 ns

APPLICATIONS INFORMATION

The MC1046 may be used as a parity checker-generator for EVEN or ODD parity simultaneously.

A highly versatile, can-count saving use of the MC1046 is in a Single-error Hamming Parity Code Detection and Correction circuit as shown here. A system word of 8-bits was used for simplicity in this example although any number of bits may be used.

In this 8-bit system, 4-bits of parity are generated and the 12 bit resulting word (8 message bits and 4-parity bits) is transmitted or otherwise processed. The Hamming Parity Detection circuit re-examines the input MESSAGE BITS exactly as the generator did. However, the parity bits generated at the receiver are compared with the transmitted parity bits via the high-speed MECL II MC1030 (Quad Exclusive "OR" Gate). The output Code (if the interconnections are correct) indicates, in a Binary Code, the bit which was in error. For example, if the output of the MC1030 were 8 = 0, 4 = 1, 2 = 0 and 1 = 1 (0101), the indication would be that the fifth bit was in error.

The system shown does not fully utilize the MC1046 by taking advantage of the 8 inputs and complimentary outputs. However, larger and more complex systems can more fully utilize its available input-output capability.

The state of the s

264