NB7VQ1006M

1.8 V / 2.5 V 10 Gbps Equalizer Receiver with 1:6 Differential CML Outputs

Multi-Level Inputs W / Internal Termination

Description

The NB7VQ1006M is a high performance differential 1:6 CML fanout buffer with a selectable Equalizer receiver. When placed in series with a Data path operating up to $10 \mathrm{~Gb} / \mathrm{s}$, the NB7VQ1006M will compensate the degraded data signal transmitted across a FR4 PCB backplane or cable interconnect and output six identical CML copies of the input signal. Therefore, the serial data rate is increased by reducing Inter-Symbol Interference (ISI) caused by losses in copper interconnect or long cables.

The EQualizer ENable pin (EQEN) allows the IN/IN inputs to either flow through or bypass the Equalizer section. Control of the Equalizer function is realized by setting EQEN; When EQEN is set Low, the $\mathrm{IN} / \overline{\mathrm{IN}}$ inputs bypass the Equalizer. When EQEN is set High, the IN/ $\overline{\mathrm{IN}}$ inputs flow through the Equalizer. The default state at startup is LOW. As such, the NB7VQ1006M is ideal for SONET, GigE, Fiber Channel, Backplane and other Data distribution applications.

The differential inputs incorporate internal 50Ω termination resistors that are accessed through the VT pin. This feature allows the NB7VQ1006M to accept various logic level standards, such as LVPECL, CML or LVDS. This feature provides transmission line termination at the receiver, eliminating external components. The outputs have the flexibility of being powered by either a 1.8 V or 2.5 V supply.

The NB7VQ1006M is a member of the GigaComm ${ }^{\text {TM }}$ family of high performance Clock/Data products.

Features

- Maximum Input Data Rate $>10 \mathrm{Gbps}$
- Maximum Input Clock Frequency $>7.5 \mathrm{GHz}$
- Backplane and Cable Interconnect Compensation
- 225 ps Typical Propagation Delay
- 30 ps Typical Rise and Fall Times
- Differential CML Outputs, 400 mV Peak-to-Peak, Typical
- Operating Range: $\mathrm{V}_{\mathrm{CC}}=1.71 \mathrm{~V}$ to $2.625 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$
- Internal Input Termination Resistors, 50Ω
- QFN-24 Package, 4 mm x 4 mm
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ambient Operating Temperature
- This Device is Pb -Free, Halogen Free and is RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION

Device	Package	Shippingt
NB7VQ1006MMNG	QFN-24 (Pb-Free)	92 Units / Tube
NB7VQ1006MMNTXG	QFN-24 (Pb-Free)	3000 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NB7VQ1006M

Figure 1. Detailed Block Diagram of NB7VQ1006M

Table 1. EQUALIZER ENABLE FUNCTION

EQEN	Function
0	$\mathrm{IN} / \overline{\mathrm{N}}$ Inputs Bypass the EQualizer Section
1	$\mathrm{IN} / \overline{\mathrm{N}}$ Inputs Flow through the EQualizer Section

Figure 2. QFN-24 Lead Pinout (Top View)

Table 2. PIN DESCRIPTION

Pin	Name	I/O	Description
1	VCC		Positive Supply Voltage for the Core Logic
2	IN	LVPECL, CML, LVDS Input	Non-inverted Differential Clock/Data Input. (Note 1)
3	IN	LVPECL, CML, LVDS Input	Inverted Differential Clock/Data Input. (Note 1)
4	VT		Internal 50Ω Termination Pin for IN and $\overline{\mathrm{IN}}$
5	EQEN	LVCMOS Input	Equalizer Enable Input; pin will default LOW when left open (has internal pull-down resistor)
6	VCC		Positive Supply Voltage for the Core Logic
7	GND		Negative Supply Voltage
8	Q5	CML	Inverted Differential Output. Typically terminated with 50Ω resistor to V_{Cc}.
9	Q5	CML	Non-inverted Differential Output. Typically terminated with 50Ω resistor to V_{CC}.
10	Q4	CML	Inverted Differential Output. Typically terminated with 50Ω resistor to V_{Cc}.
11	Q4	CML	Non-inverted Differential Output. Typically terminated with 50Ω resistor to V_{Cc}.
12	GND		Negative Supply Voltage
13	VCCO		Positive Supply Voltage for the pre-amplifier and output buffer
14	Q3	CML	Inverted Differential Output. Typically terminated with 50Ω resistor to V_{Cc}.
15	Q3	CML	Non-inverted Differential Output. Typically terminated with 50Ω resistor to V_{CC}.
16	Q2	CML	Inverted Differential Output. Typically terminated with 50Ω resistor to V_{Cc}.
17	Q2	CML	Non-inverted Differential Output. Typically terminated with 50Ω resistor to V_{Cc}.
18	VCCO		Positive Supply Voltage for the pre-amplifier and output buffer
19	GND		Negative Supply Voltage
20	Q1	CML	Inverted Differential Output. Typically terminated with 50Ω resistor to V_{Cc}.
21	Q1	CML	Non-inverted Differential Output. Typically terminated with 50Ω resistor to V_{Cc}.
22	Q0	CML	Inverted Differential Output. Typically terminated with 50Ω resistor to V_{Cc}.
23	Q0	CML	Non-inverted Differential Output. Typically terminated with 50Ω resistor to V_{Cc}.
24	GND		Negative Supply Voltage
-	EP	-	The Exposed Pad (EP) on the QFN-24 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to GND and is recommended to be electrically connected to GND on the PC board.

1. In the differential configuration when the input termination pin (VT) is connected to a common termination voltage or left open, and if no signal is applied on $\operatorname{IN} / \mathbb{N}$, then the device will be susceptible to self-oscillation.
2. All VCC, VCCO and GND pins must be externally connected to the same power supply voltage to guarantee proper device operation.

Table 3. ATTRIBUTES

Characteristics	Value
ESD Protection Human Body Model Machine Model	$>4 \mathrm{kV}$
Moisture Sensitivity (Note 1)	Level 1
Flammability Rating	Oxygen Index: 28 to 34
Transistor Count	UL 94 V-0 @ 0.125 in
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit	
$\mathrm{V}_{\mathrm{CC}},$ $\mathrm{v}_{\mathrm{CCO}}$	Positive Power Supply	GND $=0 \mathrm{~V}$		3.0	V	
V_{1}	Input Voltage	GND $=0 \mathrm{~V}$		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {INPP }}$	Differential Input Voltage \|IN-IN				1.89	V
In	Input Current Through $\mathrm{R}_{\mathrm{T}}(50 \Omega$ Resistor)			± 40	mA	
Iout	Output Current Through R_{T} (50Ω Resistor)			± 40	mA	
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$	
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 1) TGSD 51-6 (2S2P Multilayer Test Board) with Filled Thermal Vias	$\begin{gathered} 0 \mathrm{lfpm} \\ 500 \mathrm{lfpm} \end{gathered}$	$\begin{aligned} & \text { QFN-24 } \\ & \text { QFN-24 } \end{aligned}$	$\begin{aligned} & 37 \\ & 32 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
θ_{Jc}	Thermal Resistance (Junction-to-Case)	Standard Board	QFN-24	11	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)			265	${ }^{\circ} \mathrm{C}$	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS - CML OUTPUT ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCO}}=1.71 \mathrm{~V}$ to 2.625 V ; GND $=0 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)

Symbol	Characteristic	Min	Typ	Max	Unit
POWER SUPPLY CURRENT (Inputs and Outputs open)					
$\begin{aligned} & \mathrm{I}_{\mathrm{Cc}} \\ & \mathrm{I}_{\mathrm{cco}} \end{aligned}$	Power Supply Current, Core Logic $V_{C C}=2.5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$ Power Supply Current, Outputs $\begin{aligned} & \mathrm{V}_{\mathrm{CCO}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCO}}=1.8 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 85 \\ \\ 180 \\ 150 \end{gathered}$	$\begin{gathered} 115 \\ 95 \\ \\ 200 \\ 175 \end{gathered}$	mA

CML OUTPUTS (Notes 1 and 2) (Figure 10)

V_{OH}	Output HIGH Voltage $\begin{aligned} & \mathrm{V}_{\mathrm{CCO}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CCO}}=1.8 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{cco}}-40 \\ 2460 \\ 1760 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{cCo}}-10 \\ 2490 \\ 1790 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CCO}} \\ & 2500 \\ & 1800 \end{aligned}$	mV
$\mathrm{V}_{\text {OL }}$	$\begin{gathered} \text { Output LOW Voltage } \\ \mathrm{V}_{\mathrm{CCO}}=2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CO}}=2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CCO}}=1.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CCO}}=1.8 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CCO}}-600 \\ 1900 \\ \mathrm{~V}_{\mathrm{CcO}}-525 \\ 1275 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{cco}}-500 \\ 2000 \\ \mathrm{v}_{\mathrm{cco}}-425 \\ 1375 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CcO}}-400 \\ 2100 \\ \mathrm{~V}_{\mathrm{CcO}}-300 \\ 1500 \\ \hline \end{gathered}$	mV

DATA/CLOCK INPUTS (IN, IN) (Note 3) (Figures 6 \& 7)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH VoItage	1100		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{CC}}-100$	mV
V_{ID}	Differential Input Voltage ($\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}$)	100		1200	mV
I_{IH}	Input HIGH Current	-150	30	+150	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current	-150	-40	+150	$\mu \mathrm{~A}$

CONTROL INPUTS (EQEN)

V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\mathrm{CC}} \times 0.65$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{CC}} \times 0.35$	mV
I_{IH}	Input HIGH Current	-150	25	+150	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current	-150	10	+150	$\mu \mathrm{~A}$

TERMINATION RESISTORS

$\mathrm{R}_{\text {TIN }}$	Internal Input Termination Resistor	45	50	55	Ω
$\mathrm{R}_{\text {TOUT }}$	Internal Output Termination Resistor	45	50	55	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. CML outputs loaded with 50Ω to V_{CC} for proper operation.
2. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{CCO}}$.
3. $\mathrm{V}_{\mathrm{IHD}}, \mathrm{V}_{\mathrm{ILD}}, \mathrm{V}_{\mathrm{ID}}$ and $\mathrm{V}_{\mathrm{CMR}}$ parameters must be complied with simultaneously.

Table 6. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCO}}=1.71 \mathrm{~V}\right.$ to 2.625 V ; GND $=0 \mathrm{~V}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 1))

Symbol	Characteristic	Min	Typ	Max	Unit
$f_{\text {DATA }}$	Maximum Operating Input Data Rate	10			Gbps
$\mathrm{f}_{\text {MAX }}$	Maximum Input Clock Frequency $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$			GHz
V OUTPP	$\begin{aligned} & \text { Output Voltage Amplitude EQEN }=0 \text { or } 1 \\ & f_{\text {in }} \leq 5.0 \mathrm{GHz} \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \mathrm{f}_{\text {in }} \leq 7.5 \mathrm{GHz} \mathrm{VCC}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { (See Figures 4, Note 2) } \\ & f_{\text {in }} \leq 5 \mathrm{GHz} \mathrm{VCC}_{\mathrm{CC}}=1.8 \mathrm{~V} \\ & f_{\text {in }} \leq 6.5 \mathrm{GHz} \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 275 \\ & 225 \\ & 255 \\ & 200 \end{aligned}$	$\begin{aligned} & 440 \\ & 360 \\ & 360 \\ & 315 \end{aligned}$		mV
$\mathrm{V}_{\text {CMR }}$	Input Common Mode Range (Differential Configuration, Note 3) (Figure 8)	1050		$\mathrm{V}_{\mathrm{CC}}-50$	mV
$\begin{aligned} & \mathrm{t}_{\mathrm{pLL}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay to Output Differential, IN/IN to Qn/Qn	170	225	315	ps
$\mathrm{t}_{\text {PLH }}$ TC	Propagation Delay Temperature Coefficient $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		30		fs $/{ }^{\circ} \mathrm{C}$
t_{DC}	Output Clock Duty Cycle	48	50	52	\%
${ }_{\text {tskEW }}$	Duty Cycle Skew (Note 4) Within Device Skew (Note 5) Device to Device Skew (Note 6)		$\begin{gathered} \hline 0.15 \\ 10 \\ 20 \end{gathered}$	$\begin{aligned} & 1 \\ & 25 \\ & 40 \end{aligned}$	ps
$\mathrm{t}_{\text {IITTER }}$	$\begin{aligned} & \text { Random Clock Jitter RJ(RMS), } 1000 \text { cycles (Note 7) } \\ & \text { EQEN }=1 f_{\text {in }} \leq 5.0 \mathrm{GHz} \\ & 5 \mathrm{GHz} \leq \mathrm{f}_{\text {in }} \leq 7.5 \mathrm{GHz} \\ & \text { Deterministic Jitter (DJ) (Note 8) EQEN }=1, \text { FR4 }=12^{\prime \prime}, \leq 10 \mathrm{Gbps} \\ & \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$ $\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.2 \\ & \\ & 40 \\ & 20 \end{aligned}$	ps
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing (Differential Configuration) (Note 9) (Figure 6)	100		1200	mV
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall Times Qn/Qn, (20\%-80\%)		30	65	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Measured using a 400 mV source, 50% duty cycle 1 GHz clock source. All outputs must be loaded with external 50Ω to $\mathrm{V}_{\mathrm{Cco}}$. Input edge rates $40 \mathrm{ps}(20 \%-80 \%)$.
2. Output voltage swing is a single ended measurement operating in differential mode.
3. $V_{C M R}$ min varies $1: 1$ with $G N D, V_{C M R}$ max varies $1: 1$ with $V_{C C}$. The $V_{C M R}$ range is referenced to the most positive side of the differential input signal.
4. Duty cycle skew is measured between differential outputs using the deviations of the sum of $\mathrm{T}_{\mathrm{pw}}{ }^{-}$and $\mathrm{T}_{\mathrm{pw}}+@ 5 \mathrm{GHz}$.
5. Within device skew compares coincident edges.
6. Device to device skew is measured between outputs under identical transition
7. Additive CLOCK jitter with 50% duty cycle clock signal.
8. Additive Peak-to-Peak jitter with input NRZ data at PRBS23.
9. Input voltage swing is a single-ended measurement operating in differential mode, with minimum propagation change of 25 ps .

Figure 3. Output Voltage Amplitude (Voutpp) vs. Input Frequency (f_{in}) at Ambient Temperature (Typ), (EQEN = 0)

Figure 4. Input Structure

Figure 5. Differential Inputs Driven Differentially

Figure 6. AC Reference Measurement

Figure 7. $\mathrm{V}_{\mathrm{CMR}}$ Diagram

NB7VQ1006M

Figure 8. Typical Termination for CML Output Driver and Device Evaluation

Figure 9. Typical CML Output Structure and Termination

Figure 10. Alternative Output Termination

NB7VQ1006M

APPLICATION INFORMATION

Figure 11. Typical NB7VQ1006 Equalizer Application and Interconnect with PRBS23 pattern at 7.0 Gbps

NB7VQ1006M

Figure 12. LVPECL Interface

Figure 14. Standard 50Ω Load CML Interface

Figure 13. LVDS Interface

Figure 15. Capacitor-Coupled Differential Interface (VT Connected to External V REFAC)

* $\mathrm{V}_{\text {REFAC }}$ bypassed to ground with a $0.01 \mu \mathrm{~F}$ capacitor

QFN24, 4x4, 0.5P
CASE 485L
ISSUE B
DATE 05 JUN 2012
SCALE 2:1

DETAIL A
alternate CONSTRUCTIONS

DETAIL B ALTERNATE TERMINAL CONSTRUCTIONS
notes:

1. Dimensioning and tolerancing per asme Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLES TO PLATED TERMINAL

AND IS MEASURED BETWEEN 0.25 AND 0.30 Mn FROM THE TERMINALTIP.
4. COPLANARITY APPLES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.20	
D	0.30	
D2	2.70	
E	2.90	
E2	4.00	
		BSC
e	0.50	
L	0.30	2.90
L1	0.05	0.50

GENERIC
 MARKING DIAGRAM*

${ }^{0}$ XXXXX
XXXXX
ALYW.

-

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

DOCUMENT NUMBER:	98AON11783D	Electronic Versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	QFN24, 4X4, 0.5P		PAGE 1 OF 1

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

