

Unit Loading/Fan Out			
Pin Names	Description	U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{IIL}_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} \mathrm{I}_{\mathrm{OL}}$
$\mathrm{D}_{0}-\mathrm{D}_{8}$	Parallel Data Inputs	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
D_{S}	Serial Data Input	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
P_{L}	Parallel Load Input	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{\mathrm{CPSI}}$	Serial Input Clock	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{\text { IES }}$	Serial Input Enable	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
TTS	Transfer to Stack Input	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{\mathrm{OES}}$	Serial Output Enable	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
TOS	Transfer Out Serial	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
TOP	Transfer Out Parallel	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{\mathrm{MR}}$	Master Reset	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output Enable	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{\text { CPSO }}$	Serial Output Clock	2.0/0.667	$40 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Parallel Data Outputs	285/26.7	$5.7 \mathrm{~mA} / 16 \mathrm{~mA}$
Q_{S}	Serial Data Output	285/26.7	$5.7 \mathrm{~mA} / 16 \mathrm{~mA}$
$\overline{\text { IRF }}$	Input Register Full	20/13.3	$-400 \mu \mathrm{~A} / 8 \mathrm{~mA}$
$\overline{\text { ORE }}$	Output Register Empty	20/13.3	$-400 \mu \mathrm{~A} / 8 \mathrm{~mA}$

Block Diagram

Functional Description

As shown in the block diagram the 49403A consists of three sections:

1. An Input Register with parallel and serial data inputs as well as control inputs and outputs for input handshaking and expansion.
2. A 4-bit wide, 14 -word deep fall-through stack with selfcontained control logic.
3. An Output Register with parallel and serial data outputs as well as control inputs and outputs for output handshaking and expansion.
Since these three sections operate asynchronously and almost independently, they will be described separately below.

INPUT REGISTER (DATA ENTRY)

The Input Register can receive data in either bit-serial or in 4-bit parallel form. It stores this data until it is sent to the fall-through stack and generates the necessary status and control signals.
Figure 1 is a conceptual logic diagram of the input section. As described later, this 5-bit register is initialized by setting
the F_{3} flip-flop and resetting the other flip-flops. The \bar{Q} output of the last flip-flop (FC) is brought out as the "Input Register Full" output (IRF). After initialization this output is HIGH.
Parallel Entry-A HIGH on the PL input loads the $D_{0}-D_{3}$ inputs into the $F_{0}-F_{3}$ flip-flops and sets the FC flip-flop. This forces the $\overline{\mathrm{IRF}}$ output LOW indicating that the input register is full. During parallel entry, the CPSI input must be LOW. If parallel expansion is not being implemented, IES must be LOW to establish row mastership (see Expansion section).
Serial Entry—Data on the D_{S} input is serially entered into the $F_{3}, F_{2}, F_{1}, F_{0}$, FC shift register on each HIGH-to-LOW transition of the $\overline{\mathrm{CPSI}}$ clock input, provided $\overline{\mathrm{IES}}$ and PL are LOW.
After the fourth clock transition, the four data bits are located in the four flip-flops, $F_{0}-F_{3}$. The FC flip-flop is set, forcing the $\overline{\mathrm{IRF}}$ output LOW and internally inhibiting $\overline{\mathrm{CPSI}}$ clock pulses from affecting the register, Figure 2 illustrates the final positions in a 9403A resulting from a 64-bit serial bit train. B_{0} is the first bit, B_{63} the last bit.

FIGURE 2. Final Positions in a 9403A Resulting from a 64-Bit Serial Train

Functional Description (Continued)

Transfer to the Stack-The outputs of Flip-Flops $\mathrm{F}_{0}-\mathrm{F}_{3}$ feed the stack. A LOW level on the TTS input initiates a "fall-through" action. If the top location of the stack is empty, data is loaded into the stack and the input register is re-initialized. Note that this initialization is postponed until PL is LOW again. Thus, automatic FIFO action is achieved by connecting the IRF output to the TTS input.

An RS Flip-Flop (the Request Initialization Flip-Flop shown in Figure 10) in the control section records the fact that data has been transferred to the stack. This prevents multiple entry of the same word into the stack despite the fact the IRF and TTS may still be LOW. The Request Initialization Flip-Flop is not cleared until PL goes LOW. Once in the
stack, data falls through the stack automatically, pausing only when it is necessary to wait for an empty next location. In the 9403A as in most modern FIFO designs, the $\overline{M R}$ input only initializes the stack control section and does not clear the data.

OUTPUT REGISTER (DATA EXTRACTION)

The Output Register receives 4-bit data words from the bottom stack location, stores it and outputs data on a 3-STATE 4-bit parallel data bus or on a 3-STATE serial data bus. The output section generates and receives the necessary status and control signals. Figure 3 is a concep tual logic diagram of the output section.

FIGURE 3. Conceptual Output Section

Parallel Data Extraction-When the FIFO is empty after a LOW pulse is applied to $\overline{M R}$, the Output Register Empty (ORE) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the Output Register provided the "Transfer Out Parallel" (TOP) input is HIGH. As a result of the data transfer ORE goes HIGH, indicating valid data on the data outputs (provided the 3-STATE buffer is enabled). TOP can now be used to clock out the next word. When TOP goes LOW, ORE will go LOW indicating that the output data has been extracted, but the data itself remains on the output bus until the next HIGH level at TOP permits the transfer of the next word (if available) into the Output Register. During parallel data extraction CPSO should be LOW. TOS should be grounded for single slice operation or connected to the appropriate ORE for expanded operation (see Expansion section).
TOP is not edge triggered. Therefore, if TOP goes HIGH before data is available from the stack, but data does become available before TOP goes LOW again, that data will be transferred into the Output Register. However, internal control circuitry prevents the same data from being
transferred twice. If TOP goes HIGH and returns to LOW before data is available from the stack, $\overline{\text { ORE }}$ remains LOW indicating that there is no valid data at the outputs.
Serial Data Extraction-When the FIFO is empty after a LOW pulse is applied to MR, the Output Register Empty ($\overline{\mathrm{ORE}}$) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the Output Register provided TOS is LOW and TOP is HIGH. As a result of the data transfer ORE goes HIGH indicating valid data in the register. The 3-STATE Serial Data Output, Q_{S}, is automatically enabled and puts the first data bit on the output bus. Data is serially shifted out on the HIGH-to-LOW transition of CPSO. To prevent false shifting, $\overline{\mathrm{CPSO}}$ should be LOW when the new word is being loaded into the Output Register. The fourth transition empties the shift register, forces ORE output LOW and disables the serial output, Q_{S} (refer to Figure 3). For serial operation the ORE output may be tied to the TOS input, requesting a new word from the stack as soon as the previous one has been shifted out.

Functional Description EXPANSION

Vertical Expansion-The 9403A may be vertically expanded to store more words without external parts. The interconnection is necessary to form a 46-word by 4-bit FIFO are shown in Figure 4. Using the same technique, and FIFO of $(15 n+1)$-words by 4 -bits can be constructed, where n is the number of devices. Note that expansion does not sacrifice any of the 9403A's flexibility for serial/ parallel input and output.

FIGURE 4. A Vertical Expansion Scheme
Horizontal Expansion-The 9403A can also be horizontally expanded to store long words (in multiples of four bits) without external logic. The interconnections necessary to form a 16-word by 12 -bit FIFO are shown in Figure 5. Using the same technique, any FIFO of 16 words by $4 n$ bits can be constructed, where n is the number of devices. The IRF output of the right most device (most significant device) is connected to the TTS inputs of all devices. Similarly, the ORE output of the most significant device is connected to the $\overline{\mathrm{TOS}}$ inputs of all devices. As in the vertical expansion scheme, horizontal expansion does not sacrifice any of the 9403A's flexibility for serial/parallel input and output.

Horizontal and Vertical Expansion-The 9403A can be expanded in both the horizontal and vertical directions without any external parts and without sacrificing any of its FIFO's flexibility for serial/parallel input and output. The interconnections necessary to form a 31 -word by 16 -bit FIFO are shown in Figure 6. Using the same technique, any FIFO of $(15 \mathrm{~m}+1)$-words by (4 n)-bits can be constructed, where m is the number of devices in a column and n is the number of devices in a row. Figure 7 and Figure 8 show the timing diagrams for serial data entry and extraction for the 31 -word by 16 -bit FIFO shown in Figure 6. The final position of data after serial insertion of 496 bits into the FIFO array of Figure 6 is shown in Figure 9.
Interlocking Circuitry-Most conventual FIFO designs provide status signals analogous to $\overline{\mathrm{IRF}}$ and $\overline{\mathrm{ORE}}$. However, when these devices are operated in arrays, variations in unit to unit operating speed require external gating to assure all devices have completed an operation. The 9403A incorporates simple but effective "master/slave" interlocking circuitry to eliminate the need for external gating.
In the 9403A array of Figure 6 devices 1 and 5 are defined as "row masters" and the other devices are slaves to the master in their row. No slave in a given row will initialize its Input Register until it has received LOW on its IES input from a row master or a slave of higher priority.
In a similar fashion, the $\overline{\text { ORE }}$ outputs of slaves will not go HIGH until their $\overline{\text { OES }}$ inputs have gone HIGH. This interlocking scheme ensures that new input data may be accepted by the array when the IRF output of the final slave in that row goes HIGH and that output data for the array may be extracted when the ORE of the final slave in the output row goes HIGH.
The row master is established by connecting its $\overline{\mathrm{IES}}$ input to ground while a slave receives it IES input from the IRF output of the next higher priority device. When an array of 9403A FIFOs is initialized with a LOW on the MR inputs of all devices, the IRF outputs of all devices will be HIGH. Thus, only the row master receives a LOW on the IES input during initialization. Figure 10 is a conceptual logic diagram of the internal circuitry which determines master/slave operation. Whenever MR and IES are LOW, the Master Latch is set. Whenever TTS goes LOW the Request Initialization Flip-Flop will be set. If the Master Latch is HIGH, the input Register will be immediately initialized and the Request Initialization Flip-Flop reset. If the Master Latch is reset, the Input Register is not initialized until $\overline{\mathrm{ES}}$ goes LOW. In array operation, activating the TTS initiates a ripple input register initialization from the row master to the last slave.
A similar operation takes place for the output register. Either a TOS or TOP input initiates a load-from-stack operation and sets the ORE Request Flip-Flop. If the Master Latch is set, the last Output Register Flip-Flop is set and $\overline{\text { ORE }}$ goes HIGH. If the Master latch is reset, the ORE output will be LOW until an OES input is received.

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output

in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	
Standard Output	-0.5 V to V_{CC}
3-STATE Output	-0.5 V to +5.5 V

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{Cc}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$

Recommended Operating

 ConditionsFree Air Ambient Temperature Supply Voltage

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ +4.5 V to +5.5 V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied
Note 2: Either voltage limit or current limit is sufficient to protect inputs

DC Electrical Characteristics

Symbol	Parameter		Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.5	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \% V_{C C} \\ & 10 \% V_{C C} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}(\overline{\mathrm{RF}}, \overline{\mathrm{ORE}}) \\ & \mathrm{I}_{\mathrm{OH}}=-5.7 \mathrm{~mA}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{s}}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 10 \% V_{\mathrm{CC}} \\ & 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}(\overline{\mathrm{RF}}, \overline{\mathrm{ORE}}) \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{Ma}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{s}}\right) \end{aligned}$
I_{H}	Input HIGH Current				40	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IL	Input LOW Current				-0.45	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
Iozh	Output Leakage Current				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.4 \mathrm{~V}$
IozL	Output Leakage Current				-100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
Ios	Output Short-Circuit Current		-30		-130	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
${ }_{\text {ICC }}$	Power Supply Current				170	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units	Figure Number
		Min	Max	Min	Max		
${ }_{\text {t }}$	Propagation Delay, Negative-Going $\overline{\mathrm{CPSI}}$ to $\overline{\mathrm{RF}}$ Output	1.5	20.0	1.5	21.0		Figures
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, Negative-Going TTS to $\overline{\mathrm{RF}}$	1.5	36.0	1.5	38.0	ns	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay, Negative-Going $\overline{\mathrm{CPSO}}$ to Q_{S} Output	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 28.0 \\ & 28.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 29.0 \\ & 29.0 \end{aligned}$	ns	Figures 13, 14
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay, Positive-Going TOP to Outputs $Q_{0}-Q_{3}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 46.0 \\ & 46.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 48.0 \\ & 48.0 \end{aligned}$	ns	Figure 15
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Negative-Going $\overline{\text { CPSO }}$ to $\overline{\text { ORE }}$	1.5	35.0	1.5	37.0	ns	Figures 13, 14
${ }_{\text {tPHL }}$	Propagation Delay, Negative-Going TOP to $\overline{\text { ORE }}$	1.5	37.0	1.5	39.0		
${ }_{\text {tpLH }}$	Propagation Delay, Positive-Going TOP to $\overline{\text { ORE }}$	1.5	47.0	1.5	49.0	ns	Figure 15
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, Negative-Going $\overline{\mathrm{TOS}}$ to Positive Going $\overline{\mathrm{ORE}}$	1.5	42.5	1.5	45.0	ns	Figures 13, 14
${ }_{\text {tpLH }}$	Propagation Delay, Positive-Going PL to Negative-Going $\overline{\mathrm{RF}}$	1.5	28.0	1.5	29.0		Figures
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, Negative-Going PL to Positive-Going $\overline{\mathrm{RF}}$	1.5	24.0	1.5	25.0	ns	17, 18

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units	Figure Number
		Min	Max	Min	Max		
${ }_{\text {tpLH }}$	Propagation Delay, Positive-Going $\overline{\mathrm{OES}}$ to $\overline{\mathrm{ORE}}$	1.5	39.5	1.5	41.0	ns	
$t_{\text {PLH }}$	Propagation Delay, Positive-Going $\overline{\text { IES }}$ to Positive-Going IRF	1.5	20.0	1.5	21.0	ns	Figure 18
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to $\overline{\mathrm{RF}}$	1.5	20.0	1.5	20.0	ns	
${ }_{\text {t PHL }}$	Propagation Delay, $\overline{\mathrm{MR}}$ to $\overline{\mathrm{ORE}}$	1.5	33.0	1.5	35.0	ns	
$\overline{t_{\text {PZH }}}$ $t_{\text {PZL }}$	Propagation Delay, $\overline{\mathrm{OE}}$ to $\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 14.0 \\ & 14.0 \end{aligned}$		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Propagation Delay, $\overline{\mathrm{OE}}$ to $\mathrm{Q}_{0}, \mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 14.0 \\ & 14.0 \end{aligned}$	ns	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Propagation Delay, Negative-Going $\overline{O E S}$ to Q_{S}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 16.5 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 17.0 \\ & 17.0 \end{aligned}$	ns	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Propagation Delay, Negative-Going OES to Q_{S}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$		
$\begin{aligned} & \hline \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	$\begin{aligned} & \text { Turn On Time } \\ & \overline{T O S} \text { to } Q_{S} \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 60.0 \\ & 60.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 60.0 \\ & 60.0 \end{aligned}$	ns	
$\mathrm{t}_{\text {DFT }}$	Fall Through Time		500		500	ns	Figure 16
$\mathrm{t}_{\text {AP }}$	Parallel Appearance Time, $\overline{\text { ORE }}$ to $Q_{0}-Q_{3}$	-19.0	6.5	-20.0	7.0	ns	
$\mathrm{t}_{\text {AS }}$	Serial Appearance Time, $\overline{\text { ORE }}$ to Q_{S}	-9.5	14.5	-10.0	15.0	ns	
${ }_{\text {t }}$	Bubble-Up Time		470		500	ns	

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units	Figure Number
		Min	Max	Min	Max		
$\mathrm{t}_{\text {S }}(\mathrm{H})$	Setup Time, HIGH or LOW	15.5		16.0		ns	Figures 11, 12
$\mathrm{t}_{\mathrm{S}}(\mathrm{~L})$	D_{S} to Negative $\overline{\mathrm{CPSI}}$	15.5		16.0			
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	2.0		2.0			
$t_{H}(\mathrm{~L})$	$\mathrm{D}_{\mathrm{S}} \text { to } \overline{\mathrm{CPSI}}$	2.0		2.0			
$\mathrm{t}_{\mathrm{S}}(\mathrm{L})$	Set-Time, LOW Negative-Going $\overline{\mathrm{IES}}$ to $\overline{\mathrm{CPSI}}$	18.0		18.0		ns	Figure 12
$\overline{\mathrm{t}_{\mathrm{S}}(\mathrm{L})}$	Set-Up Time, LOW Negative-Going TTS to $\overline{\mathrm{CPSI}}$	65.0		70.0		ns	Figure 12
$\mathrm{t}_{\text {S }}(\mathrm{H})$	Set-Up time, HIGH or LOW	0		0		ns	
$\mathrm{t}_{\mathrm{S}}(\mathrm{~L})$	Parallel Inputs to PL	0		0			
$\overline{t_{\mathrm{H}}(\mathrm{H})}$	Hold Time, HIGH or LOW	0		0			
$\mathrm{t}_{\mathrm{H}}(\mathrm{~L})$	Parallel Inputs to PL	0		0			
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	$\overline{\text { CPSI Pulse Width }}$	30		32			Figures
$\mathrm{t}_{\text {w }}(\mathrm{L})$	HIGH or LOW	20		20		ns	11, 12
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	PL Pulse Width, HIGH	16.5		17.0		ns	$\begin{gathered} \hline \text { Figures } \\ 17,18 \end{gathered}$
${ }_{t_{W}(L)}$	TTS Pulse Width, LOW Serial or Parallel Mode	16.0		17.0		ns	$\begin{gathered} \text { Figures } \\ 11,12,13, \\ 14 \end{gathered}$
${ }_{\text {tw }}(\mathrm{L})$	$\overline{\text { MR Pulse Width, LOW }}$	15.0		15.0		ns	Figure 16
$\overline{t_{w}(H)}$	TOP Pulse Width	15.0		17.0			
$t_{w}(L)$	HIGH or LOW	15.0		15.0		ns	Figure 15
	$\overline{\text { CPSO }}$ Pulse Width	17.0		17.0			
$t_{w}(L)$	HIGH or LOW	17.0		18.0		ns	$13,14$
$\mathrm{t}_{\text {REC }}$	Recovery Time $\overline{\mathrm{MR}}$ to Any Input	16.5		19.0		ns	Figure 16

Timing Waveforms

Conditions: stack not full, $\overline{\text { IES }}$, PL LOW
FIGURE 11. Serial Input, Unexpanded or Master Operation

Conditions: stack not full, $\overline{\text { IES }}$ HIGH when initiated, PL LOW
FIGURE 12. Serial Input, Expanded Slave Operation

Conditions: data in stack, TOP HIGH, $\overline{\text { IES }}$ LOW when initiated, $\overline{\text { OES }}$ LOW
FIGURE 13. Serial Output, Unexpanded or Master Operation

Conditions: data in stack, TOP HIGH, $\overline{\text { IES }}$ HIGH when initiated
FIGURE 14. Serial Output, Slave Operation

Conditions: $\overline{\mathrm{IES}}$ LOW when initiated, $\overline{\mathrm{OE}}, \overline{\mathrm{CPSO}}$ LOW; data available in stack FIGURE 15. Parallel Output, 4-Bit Word or Master in Parallel Expansion

Conditions: $\overline{\mathrm{TTS}}$ connected to $\overline{\mathrm{IRF}}, \overline{\mathrm{TOS}}$ connected to $\overline{\mathrm{ORE}}, \overline{\mathrm{IES}}, \overline{\mathrm{OES}}, \overline{\mathrm{OE}}, \overline{\mathrm{CPSO}}$ LOW, TOP HIGH FIGURE 16. Fall Through Time

Timing Waveforms (Continued)

Conditions: stack not full, $\overline{\mathrm{IES}}$ LOW when initialized
FIGURE 17. Parallel Load Mode, 4-Bit Word (Unexpanded) or Master in Parallel Expansion

Conditions: stack not full, device initialized (Note 3) with $\overline{\mathrm{IES}}$ HIGH
FIGURE 18. Parallel Load, Slave Mode
Note 3: Initialization requires a master reset to occur after power has been applied.
Note 4: $\overline{\text { TTS }}$ normally connected to $\overline{\mathrm{RF}}$.
Note 5: If stack if full, $\overline{\mathrm{RF}}$ will stay LOW.

Physical Dimensions inches (millimeters) unless otherwise noted

N24E (REV A)
24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
Package Number N24E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life suppor device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
